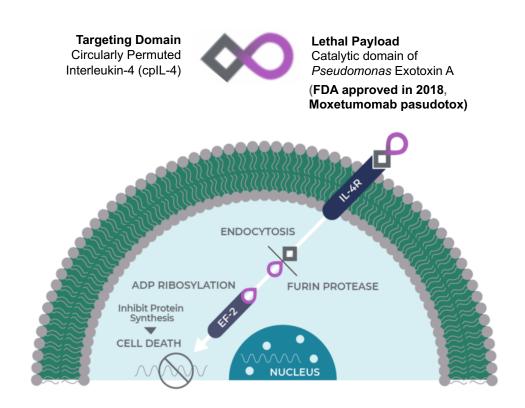
17 NOVEMBER 2023

2023 SNO


Overall Survival of Recurrent Glioblastoma (rGBM) in Patients on Bizaxofusp (MDNA55), an IL-4R Targeting Toxin – Phase 2b Study

John H. Sampson, Achal Singh Achrol, Manish K. Aghi, Krystof Bankiewicz, Martin Bexon, <u>Steven Brem</u>, Andrew Brenner, Sajeel Chowdhary, Melissa Coello, Sunit Das, Annick Desjardins, Benjamin M. Ellingson, John R. Floyd, Seunggu Han, Santosh Kesari, Yael Mardor, Fahar Merchant, Rosemina Merchant, Joanna Phillips, Dina Randazzo, Michael Vogelbaum, Frank Vrionis, Eva Wembacher-Schroeder, Minh To, Miroslaw Zabek, Nicholas Butowski

Bizaxofusp (MDNA55): Potent IL4R Targeting Toxin

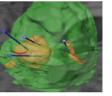
- Target: IL4R expressed in CNS tumors but not healthy brain
- > **CED:** Bypasses Blood Brain Barrier
- Highly Selective: Avoids collateral damage to healthy brain
- Disrupts the TME: Targets IL4R positive MDSCs and disrupts Th2 bias
- Immunogenic Cell Death: Anti-tumor immunity is initiated and remains active after Bizaxofusp is cleared

Study Design: Bizaxofusp Treatment Arm

1. Eligibility

- > Adults ≥ 18 yrs
- De novo GBM at initial diagnosis
- > 1st or 2nd relapse
- No resection
- ➢ KPS ≥ 70
- IDH wild-type only
- Retrospective IL4R analysis from initial Dx

N = 44 Per Protocol Population


2. Characteristics	N (%)
Total Patients	44
Age (median, range)	56 years (34 – 77)
Sex (Male)	27 / 44 (61%)
KPS at Enrolment: 70, 80 90, 100	22 / 44 (50%) 22 / 44 (50%)
De novo GBM	44 / 44 (100%)
Poor candidates for repeat surgery	44 / 44 (100%)
IDH Wild-type	37 / 37 (100%)
Unmethylated MGMT	23 / 40 (58%)
IL4R over-expression	21/40(53%)
Steroid use during study > 4mg/day	23 / 44 (52%)
Max Tumor Diameter	29.6 mm (8 – 59)
# Prior Relapse: 1,2	35 (80%) , 9 (20%)

3. Bizaxofusp Administration

Single infusion of Bizaxofusp by Convection Enhanced Delivery (CED)

Benefits of CED:

- > Bypasses blood-brain barrier
- > Maximizes drug exposure at tumor
- Avoids systemic toxicities.
- Uniform drug distribution

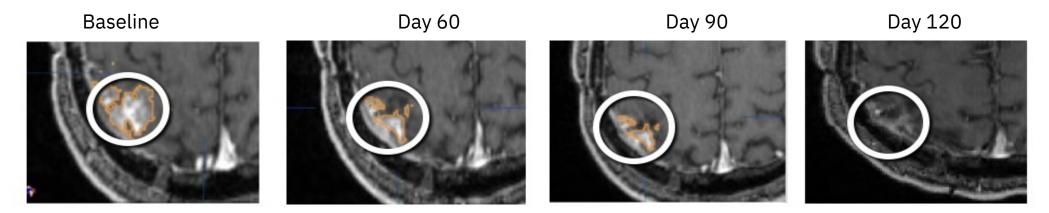
Blue: Catheters Orange: Tumor Green: Bizaxofusp

4. Bizaxofusp Study Objectives

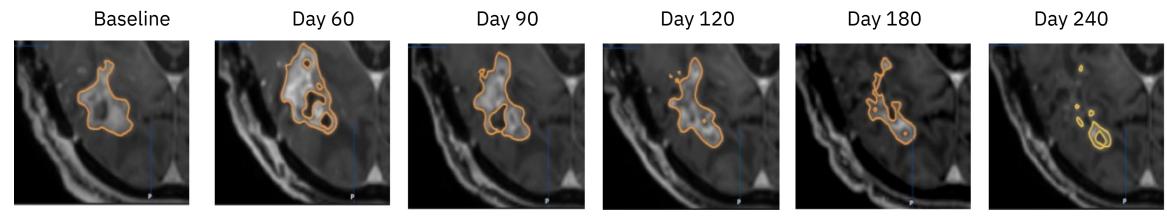
- Primary Endpoint:
 - Overall Survival (OS)
- Secondary Endpoints:
 - o Safety
 - ORR (mRANO)
 - PFS (mRANO)
 - o mOS vs. IL4R expression

Study Design: External Control Arm (ECA)

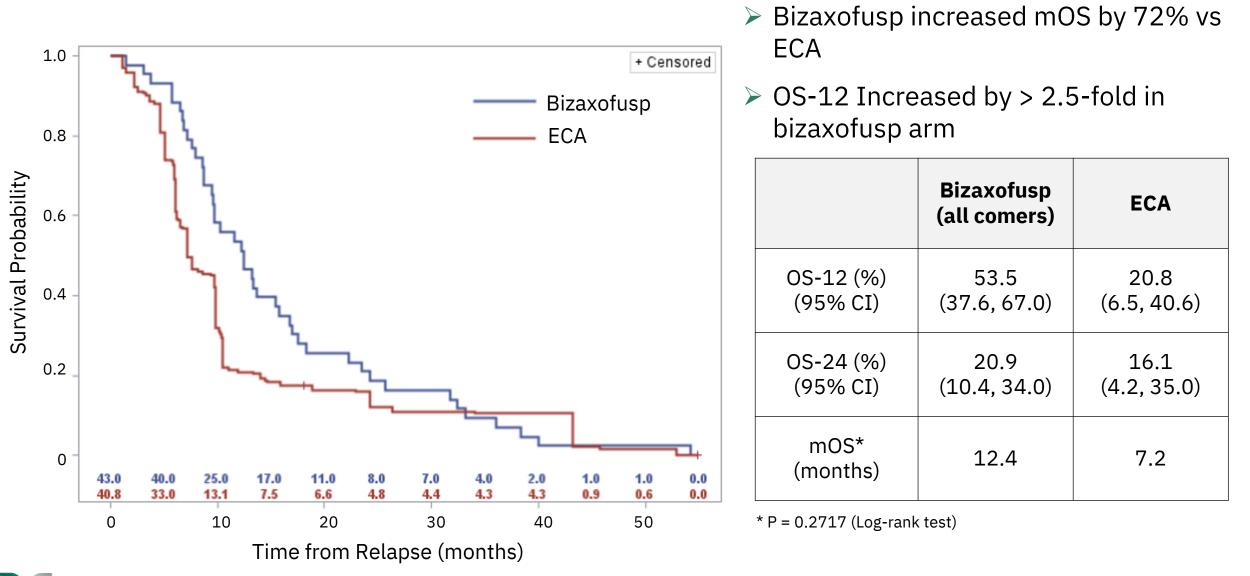
1. Eligibility	2. Baseline Parameters for Matching Patients in ECA with Experiment Arm	3. Construction of ECA	4. ECA Arm Objectives
 > Adults ≥ 18 yrs > De novo GBM at initial diagnosis > 1st or 2nd relapse > No resection 	 Age Sex KPS MGMT methylation status 	[STEP 1] Data preparation: feasibility and quality, mapping, standardization, covariates	Unblinding of treatment outcome of propensity matched ECA for comparative analysis with bizaxofusp data
 > KPS ≥ 70 > IDH wild-type only > IL4R analysis from initial Dx 	 IL4R expression level Time from initial diagnosis to relapse Number of prior relapses Extent of resection at initial diagnosis 	[STEP 2] Estimate propensity scores: statistical models [STEP 3] Propensity score	Eligibility matched
 Tumor size at relapse Tumor location at relapse Steroid use prior to treatment 	balancing algorithm - weighting	Propensity score matched	
N = 81 Eligibility matched		[STEP 4] Evaluation of balance in baseline characteristics	0.00 0.25 0.50 0.75 1.00 Propensity Score Bizaxofusp ECA

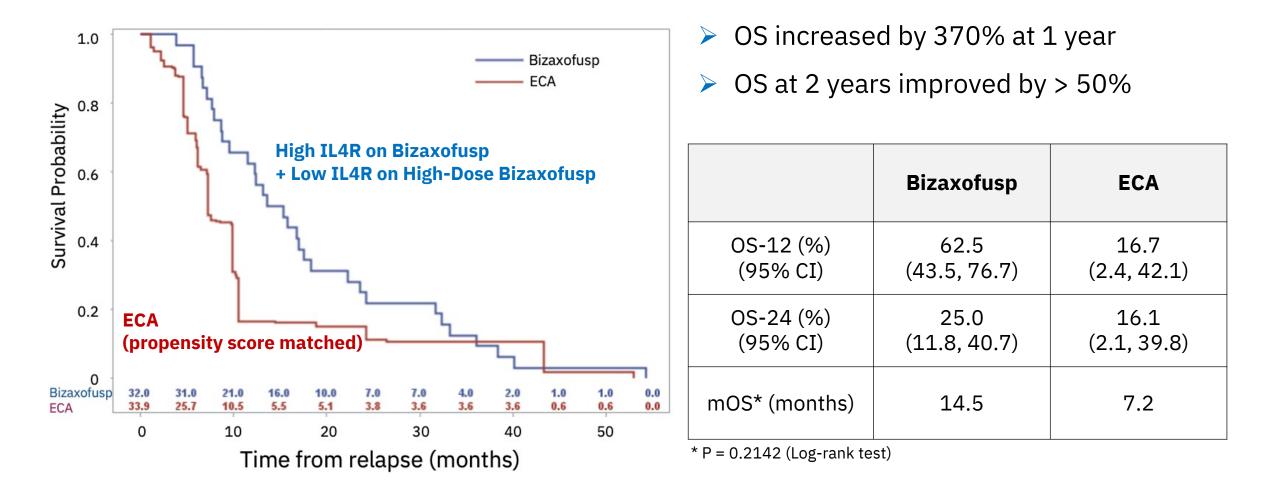

Bizaxofusp Safety Profile

RELATED AEs ≥ GRADE 3 OCCURRING IN ≥ 5% SUBJECTS (SOC / PREFERRED TERM)	TOTAL N=47 [n (%)]	RELATED SAEs OCCURRING IN ≥ 5% SUBJECTS (SOC / PREFERRED TERM)	TOTAL N=47 [n (%)]
# of Subjects	10 (21.3)	# of Subjects	9 (19.1)
Nervous system disorders	10 (21.3)	Nervous system disorders	4 (8.5)
Brain Edema / Hydrocephalus	4 (8.5)	Seizure	4 (8.5)
Hemiparesis	3 (6.3)		
Seizure	3 (6.3)		



Tumor Response Following Single Dose of Bizaxofusp

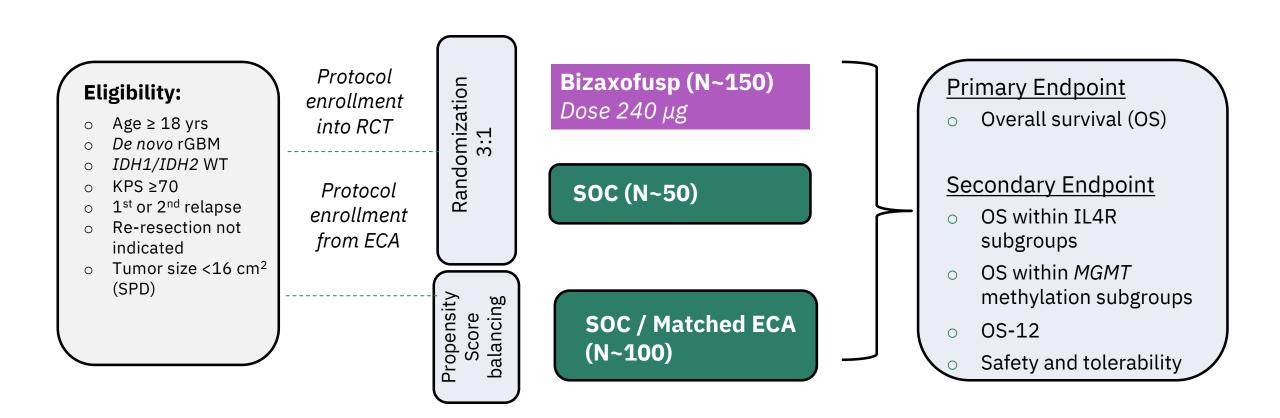

Acute tumor response


Tumor response following initial pseudo-progression

Overall Survival : Bizaxofusp vs. Propensity Matched ECA

Bizaxofusp Doubled mOS Irrespective of IL4R Expression vs ECA

Compelling survival benefit justifies registration trial endorsed by FDA



Interim and Complete Survival Data for Bizaxofusp

	Interim Survival Data	Complete Survival Data
	30 months follow up	52 months follow up
All Comers [N = 43]		
mOS	12.4 months	12.4 months
OS-12	53.5%	53.5%
OS-24	18.6%	21%
OS-36	N/A	9.3%
Patients Censored*	6	None
Phase 3 Population [N	= 32; High IL-4R (all bizaxofusp doses) + l	ow IL-4R (high dose bizaxofusp)]
mOS	14.5 months	14.5 months
OS-12	62.5%	62.5%
OS-24	21.8%	25%
OS-36	N/A	12.5%
Patients Censored	6	None

*Patients censored for analysis

FDA Endorsed Design of a Phase 3 Study: Bizaxofusp vs Hybrid Control

Summary

- Among all comers, mOS was 12.4 months in the bizaxofusp arm vs 7.2 months for propensity matched ECA
- High dose of bizaxofusp in planned Phase 3 population doubled mOS vs propensity matched ECA irrespective of IL-4R expression
 - o mOS of 14.5 months on bizaxofusp vs 7.2 months of propensity score matched ECA
- FDA endorsed Phase 3 study design with high dose bizaxofusp and a Hybrid Control Arm that leverages propensity score balancing for the following reasons:
 - Large effect size demonstrated in Phase 2b study
 - Significant unmet medical need
 - Buy-in and, in fact, encouragement from FDA statistical review group
- No systemic or clinically significant laboratory abnormalities were reported; TRAEs were primarily neurological or aggravation of pre-existing neurological deficits due to rGBM

Authors' Affiliations

Medicenna Therapeutic, Toronto, ON; Duke University Medical Center, Durham NC; Loma Linda University Medical Center, Loma, Linda, CA; University of California San Francisco, San Francisco, CA; Ohio State University College of Medicine, Columbus, OH; Hospital of the University of Pennsylvania, Philadelphia, PA; University of Texas Health Science Center San Antonio, San Antonio, TX; Boca Raton Regional Hospital, Boca Raton, FL; The Preston Robert Tisch Brain Tumor Center at Duke, Durham, NC; University California Los Angeles, Los Angeles, CA; Stanford University, Stanford, CA; Pacific Neurosciences Institute, Santa Monica, CA; The Advanced Technology Center, Sheba Medical Center; H. Lee Moffit Cancer Center and Research Institute, Tampa, FL; Brainlab AG, Munich, Germany; Mazovian Bronowski Hospital, Warsaw, Poland ; St. Michael's Hospital, Li Ka Sheng Knowledge Institute, Toronto, ON

Acknowledgements

John Sampson, MD, PhD Dina Randazzo, DO Duke University School of Medicine

Nicholas Butowski, MD Krystof Bankiewicz, MD, PhD, Manish K. Aghi, MD, PhD Joanna Phillips, MD, PhD John Bringas University of California San Francisco

Achal Achrol, MD Santosh Kesari, MD, PhD Pacific Neurosciences Institute and John Wayne Cancer Institute

Michael Vogelbaum, MD, PhD Cleveland Clinic

Steven Brem, MD Hospital of the University of Pennsylvania

Seunggu Han, MD Oregon Health & Science Andrew Brenner, MD, PhD John R. Floyd, MD Cancer Therapy and Research Center at University of Texas at San Antonio

Frank Vrionis, MD, PhD Sajeel Chowdhary, MD Boca Raton Regional Hospital

Miroslaw Zabek, MD Mazovian Brodnowski Hospital

David Reardon, MD Dana-Farber Cancer Institute

Ben Ellingson, PhD University of California Los Angeles

Puneet Plaha, MD University of Oxford

Eva Wembacher-Schroder, PhD *BrainLab, Munich, Germany* Ruthie Davi, PhD Antara Majumdar, PhD Acorn AI, a Medidata company

Amy McKee, MD Martin Roessner, MS Parexel

Sunit Das, MD, PhD Sorcha Kellett Labeeba Nusrat St. Michael's Hospital

Fahar Merchant, PhD Martin Bexon, MBBS Nina Merchant, MSc Melissa Coello, BSc Medicenna Therapeutics

.....And most of all, to the patients & their families

This study is partly supported by a grant from Cancer Prevention and Research Institute of Texas (CPRIT)

