AACR Annual Meeting 8TH-13TH APRIL 2022

Characterization of a Long-Acting IL-13 Super-Antagonist Engineered to Target Tumor Associated Macrophages and Myeloid Cells

Aanchal Sharma, PhD. Research Scientist

Overview of IL-4/IL-13 Signaling

- M2 Tumor Associated Macrophages (TAMs) and Myeloid Derived Suppressor Cells (MDSCs) promote an immune suppressive tumor microenvironment (TME)
- IL-4/IL-13 pathway promotes M2 TAMs and MDSC, therefore limiting immune effector cells (i.e., immunologic cold tumors) to support tumor growth and progression
- Inhibition of IL-4/IL-13 signaling invigorates effector immune cells and enhances anti-tumor immunity

AACR Annual Meeting April 8TH- 13TH 2022

Fc-MDNA413: Proposed Mechanism of Action

MDNA413 binds and blocks signaling from Type II (IL-4 α /IL-13R α 2) receptor, leading to:

- Blockade of polarization of TAM to M2a lineage.
- Inhibition of MDSC expansion and immune suppressive capabilities.
- Potential Inhibition of tumor growth and progression by directly acting on tumor cells.

AACR Annual Meeting April 8TH- 13TH 2022

Selectivity Towards IL-13R α 1 With Reduced Affinity to IL-13R α 2

	Time (s)	Time (s)	
	0 200 400	0 200 400	
		0-1	-
	20-		
		20-	
		æ "	
5	· · · · · · · · · · · · · · · · · · ·	8 40-	
<u> </u>	ξ 80-	ë ⁶⁰	
ř	a ¹⁰⁰	8	
9	120-	80-	
\sim		100	
	140-	100-	

K _D (nM)	Fc-IL13	Fc-MDNA413		
IL-13Rα1	202	18.1		
IL-13Rα2	0.69	19.6		

SPR performed on immobilized ligands with receptors as flow analytes using MCK

AACR Annual Meeting April 8TH- 13TH 2022

V

Characterization of a Long-Acting IL-13 Super-Antagonist Engineered to Target Tumor Associated Macrophages and Myeloid Cells.

4

Fc-MDNA413 Inhibits IL-4 and IL-13 Induced Signaling

Inhibition of IL-13 Induced Signaling

IC ₅₀ (nM)	Fc-MDNA413
IL-4 Signaling	26.4
IL-13 Signaling	39
Assay performed in HEK Blue IL-4/II	-13 reporter cells (InvivoGen);

Assay performed in HEK Blue IL-4/IL-13 reporter cells (InvivoGen); Measurement of pSTAT6 activity. 0.1 nM of rh IL-4 and 0.8 nM of rh IL-13 was used in the competition assay format

AACR Annual Meeting April 8TH- 13TH 2022

Fc-MDNA413 Inhibits IL-13 Induced TF-1 Proliferation

- TF-1 is a human erythro-leukemia cell line that is highly dependent on IL-4/IL-13 for proliferation.
- Inhibition of IL-13 Induced TF-1 Proliferation.

AACR Annual Meeting April 8TH- 13TH 2022

Fc-MDNA413 Inhibits IL-4 and IL-13 Induced M2a Polarization

 IC_{50} (nM)

1.76

12.7

Surfaco	Evproccion	of M2a	markors	CD206	and CD200	
Surface	Expression	of MZa	markers.	LD200	and CD209	

AACR Annual Meeting April 8TH- 13TH 2022

IL-4 mediated M2

IL-13 mediated

M2 polarization

polarization

Characterization of a Long-Acting IL-13 Super-Antagonist Engineered to Target Tumor Associated Macrophages and Myeloid Cells.

IC₅₀ (nM)

3.2

11.9

Fc-MDNA413 Inhibits Tumor Growth As Monotherapy and Acts Synergistically With a Long-Acting IL-2 Super-Agonist (MDNA19)

- B16F10 is an aggressive melanoma model with low mutation burden (i.e., poorly immunogenic) and infiltration of TAMs and MDSC.
- Combination treatment suppresses M2a TAMs and MDSC (i.e., Fc-MDNA413) while promoting immune effectors cells (i.e., MDNA19) to promote a potent anti-tumor response.

B16F10 Melanoma

Tumor bearing mice were treated with either Fc-MDNA413 30 mg/kg twice weekly x 3 post 3 days of cell implantation or MDNA19 5 mg/kg once weekly X 2 IP, a week after Fc-MDNA413 dosing.

AACR Annual Meeting April 8TH- 13TH 2022

Fc-MDNA413 Exhibits Synergy with MDNA19 but not Anti-PD1 in B16F10 Model

Tumor bearing mice were treated with either Fc-MDNA413 30 mg/kg twice weekly x 3 post 3 days of cell implantation or MDNA19 5 mg/kg once weekly X 2 IP, a week after Fc-MDNA413 dosing, or anti-PD1 10 mg/kg twice weekly x 2 IP, a week after Fc-MDNA413 dosing

AACR Annual Meeting April 8TH- 13TH 2022

Key Summary

IL-13 Super-Antagonist, Fc-MDNA413 Superkine shows:

Selectivity towards IL-13Rα1 and blocks IL-4 / IL-13 mediated function (pSTAT6 signaling, TF-1 proliferation and M2a polarization of macrophages).

Fc-MDNA413 synergizes with an IL-2 agonist (MDNA19) to inhibit *in vivo* tumor growth

□ Fc-MDNA413 suppresses the Th2 immune response while MDNA19 enhances the Th1 immune response to act in conjunction resulting in enhanced efficacy.

These data highlight the potential synergy of co-targeting suppressive and effector immune cells within otherwise 'immunologically cold' TME to achieve effective therapeutic efficacy.

AACR Annual Meeting April 8TH- 13TH 2022