

Naples, Italy November 30th - December 1st, 2022

Early Results of an IL-2 Superkine (MDNA11) from the Phase 1/2 ABILITY Study in Advanced Solid Tumors

Fahar Merchant¹, Victoria G. Atkinson², Martin Bexon¹, Jim Coward³, Jenny Lee⁴, Charlotte R. Lemech⁵, Jesus F. Antras⁶, Peter Lloyd⁷, <u>Arash Yavari⁸</u>, Nina Merchant¹, Minh D. To¹

¹Medicenna Therapeutics, Toronto, ON, Canada; ²Gallipoli Medical Research Foundation, Greenslopes, QLD; ³ICON Cancer Centre, South Brisbane, QLD; ⁴Chris O'Brien Lifehouse, Camperdown, NSW; ⁵Scientia Clinical Research, Randwick, NSW; ⁶Princess Margaret Hospital, Toronto, ON, Canada; ⁷Kindyn Consulting, Warnham, West Sussex, UK; ⁸University of Oxford, Oxford, UK.

CONFLICT OF INTEREST STATEMENT

I hereby declare that I do not conduct activities that would involve a conflict of interest with CME-accreditable training, but that in the past 2 (two) years I have received the funding listed below from the following sources:

- 1. Employment/other financial University of Oxford, Imbria, Weatherden
- 2. Research/grant funding SBI Pharmaceuticals
- 3. Advisory role Medicenna Therapeutics

Biology of IL-2 and High Dose IL-2 Immunotherapy

> IL-2, a 15 kDa multi-faceted cytokine with dual immune functions:

- immunostimulation proliferation and generation of effector and memory T cells and NK cells
- immune suppression promoting generation, survival and functional capacity of Tregs
- High dose recombinant human IL-2 (HD-rhIL-2, aldesleukin) can result in durable complete tumor remission as monotherapy in a subset of patients with metastatic melanoma and renal cell carcinoma (RCC)
- > However, its broad clinical use is limited by:
 - very short half life and requirement for frequent high doses
 - severe toxicities necessitating specialist center administration
 - preferential stimulation of Tregs and lower potency on effector immune cells (i.e. CD8⁺ T and NK cells)

rhIL-2

MDNA11: A Long-acting, Next-generation, β-only IL-2 Superkine

MDNA11 - engineered to overcome key limitations of HD rhIL-2:

- ↑ affinity to IL-2Rβ (CD122) Potentiate effector cell activation
- Abolish binding to IL-2R α (CD25) \downarrow Treg stimulation & toxicities
- Fusion to human albumin to overcome rapid renal clearance, • increase half-life and promote tumor accumulation

MDNA11 exerts potent anti-tumor and memory responses in multiple tumor models as monotherapy and combined with ICI

Merchant et al., JITC 2022

bridge

MDNA11

MDNA11 Durably Accumulates In Solid Tumors In Vivo

PK Profile in Mice

MDNA11 Imaging in CT26 Tumor Model

4-hr Post-dose

72-hr Post-dose

120-hr Post-dose

MDNA11 labelled with VivoTag800; IV dosing (1 mg/kg); Tumor size: 150-200 mm³

Tumor exposure of MDNA11 is > 15x longer than its serum half-life

ABILITY MDNA11 FIH Trial (<u>A Beta-only IL-2 ImmunoTherapY</u>)

- > Design: First-in-human, open-label study of MDNA11 as single agent & with pembrolizumab
- Patient population: Patients with treatment-refractory advanced solid tumors

IMMUNOTHERAPY bridge 2022

Baseline Patient And Tumor Characteristics

Demographics/Performance status	N=14	
Age, median years (range)	63 (27-78)	
Male, n (%)	11 (79%)	
Baseline ECOG = 0, n (%)	10 (71%)	
Baseline ECOG = 1, n (%)	4 (29%)	
Primary Tumor Type	N, %	
Melanoma	7 (50%)	
Renal Cell Carcinoma (non-clear cell)	1 (7%)	
Pancreatic Ductal Adenocarcinoma (PDAC)	2 (14%)	
Sarcoma	2 (14%)	
Squamous Cell Carcinoma	1 (7%)	
Gastro-esophageal Adenocarcinoma	1 (7%)	
Prior Anti-cancer Systemic Therapies	N, %	
Prior Lines of Therapy: 1-2	9 (64%)	
Prior Lines of Therapy: 3-4	5 (36%)	
Immunotherapy	11 (79%)	
Targeted therapy	4 (28%)	
Chemotherapy	7 (50%)	

Data from all patients enrolled in Cohorts 1-4

Clinical PK of MDNA11

- > MDNA11 PK exhibits saturable rapid clearance and a slower parallel linear clearance process
- > Dose-dependent increase in exposure (C_{max} & AUC_{last}) with low variability between doses

MDNA11 Induces Sustained Peripheral Lymphocyte Expansion

- > Lymphocyte counts elevated above baseline for > 11 d consistent with prolonged PD effect
- > No significant eosinophil expansion (associated with increased risk of vascular leak syndrome)

*Patients received 2 priming doses (30 µg/kg; Q2W) prior to target dose of 60 µg/kg (Q2W). Only data following target dose administration are shown

MDNA11's Ability To Induce Lymphocyte Cell Expansion Is Dose-dependent And Consistent Across Patients

> Effect of escalating doses of MDNA11 on individual patient absolute lymphocyte count

MDNA11 Preferentially Stimulates CD8⁺ T & NK Cell Proliferation, Validating The Molecular Design

> Findings consistent with MDNA11's MoA of selective binding to CD122 (i.e. β -only IL-2)

Peak fold-change relative to baseline. Proliferation assessed based on Ki67 expression *Patients received 2 priming 30 μg/kg doses (Q2W) prior to target dose of 60 μg/kg. Data for 30 μg/kg cohort are based on 3rd administration for comparison.

MDNA11's Ability To Induce Preferential CD8⁺ T And NK Cell Expansion Is Maintained Over Multiple Treatment Cycles

MDNA11: 30 µg/kg (N = 4)

MDNA11: 60 µg/kg* (N = 6)

MDNA11 Induces Dose-dependent Expansion Of CD8⁺ T Cells And NK Cells But Not Tregs

Peak fold-change relative to baseline

Patients received 2 priming 30 μ g/kg doses (Q2W) prior to the targeted 60 μ g/kg (at 3rd administration). Data shown for 30 μ g/kg cohort are based on 3rd administration for comparison

MDNA11 Single Agent Safety Profile Across All Cohorts

Preferred Term	Cohort 1 (3 µg/kg) N = 1	Cohort 2 (10 μg/kg) N = 3	Cohort 3 (30 µg/kg) N = 4	Cohort 4 (60 µg/kg) N = 6	Total N = 14
All Grades (> 20%)					
Infusion related reaction ^{##}	1 (100%)	2 (66.6%)	3 (75%)	5 (83.3%)	11 (78.6%)
Nausea		2 (66.6%)		5 (83.3%)	8 (57.1%)
Pyrexia		1 (33.3%)	2 (50%)	4 (66.6%)	7 (50%)
Fatigue		2 (66.6%)	2 (50%)	1 (16.6%)	5 (35.7%)
Diarrhea		1 (33.3%)	1 (25%)	2 (33.3%)	4 (28.6%)
Chills		1 (33.3%)	1 (25%)	1 (16.6%)	3 (21.4%)
Headache			1 (25%)	2 (33.3%)	3 (21.4%)
Grade 3-4 (> 5%)					
Alanine aminotransferase increase				1 (16.6%)*	1 (7.1%)
Blood bilirubin increase				1 (16.6%)*	1 (7.1%)
Hypotension			1 (25%)#		1 (7.1%)
Lymphocyte count decrease		1 (33.3%)\$	1 (25%)\$		2 (14.2%)

* Transient elevations resolving within 3-4 d; # Patient with adrenal insufficiency; \$ Transient expected lymphopenia immediately after MDNA11 administration; ## Infusion related reaction mostly comprised fever, tachycardia and chills

Data cut off: Oct 19, 2022

Majority of AEs were Grade 1-2 (92%) and transient, resolving within 1-2 days

> MTD / RP2D not established yet – dose escalation continues

IMMUNOTHERAPY bridge 2022

MDNA11 Single Agent Dose Escalation: Time On Treatment

Evidence of clinical activity & disease control in 5 of 14 evaluable patients (incl. 1 confirmed PR in PDAC) in context of ongoing dose escalation and pre-treated advanced solid tumors

Target lesions exhibit SD; PD due to clinical progression or patient withdrawal

Data cut off: Oct 21, 2022

Single Agent Activity In Dose Escalation: Best % Change From Baseline In Target Lesions (RECIST V1.1)

Target lesions exhibit SD; PD due to clinical progression or patient withdrawal

Confirmed partial response with single agent MDNA11 in cohort 4:

- Patient with pancreatic ductal adenocarcinoma
- Surgical resection (Whipple's procedure) June 2021
- Adjuvant FOLFIRINOX (adjuvant): discontinued due to progression
- Abraxane (nabpaclitaxel) & gemcitabine: discontinued due to toxicity
- Pembrolizumab: Discontinued due to progression

Naples, Italy

November 30th - December 1st, 2022

• Continues on single agent MDNA11

Conclusions: Single Agent MDNA11

- Long-acting, next-generation IL-2 with selective & enhanced affinity for the IL-2βR present on CD8+ T cells and NK cells and albumin fusion resulting in durable accumulation in tumors
- > Exhibits dose-proportional PK profile in patients with advanced tumors
- Induces sustained, dose-dependent expansion of circulating CD8+ T and NK cells, without Treg induction, consistent with target engagement and its molecular design
- > Manageable safety profile: majority (92%) of treatment-related AEs are transient grade 1-2
- Initial evidence of single agent clinical activity during dose escalation across multiple, treatment-refractory, advanced solid tumor types and dose levels with a current tumor control rate of 36% (5/14) including a partial response and prolonged stable disease
- Findings support the ongoing dose escalation and further evaluation of MDNA11 as a single agent and in combination with CPI in patients with a range of advanced solid tumors

Acknowledgements

- The authors would like to thank the patients who have participated in the ABILITY trial and the families of these patients
- We would also like to thank the investigators and all clinical and support trial staff at each of the study sites for their investment of time and effort into the trial
- > Funding and sponsorship for this trial was provided by Medicenna Therapeutics

