KOL Call on MDNA55 for the Treatment of Recurrent Glioblastoma (rGBM)

December 11, 2020, 11:00am EST

Disclaimer and Forward Looking Statements

Certain statements in this presentation may constitute "forward-looking statements" under applicable securities laws. These forward-looking statements include, but are not limited to, information about possible or assumed future results of the Medicenna Therapeutics Corp's (the "Company" or "Medicenna") business, clinical trials, drug development, financial condition, results of operations, liquidity, plans and objectives. Further, any statements that express or involve discussions with respect to predictions, expectations, beliefs, plans, projections, objectives, assumptions or future events or performance (often, but not always, using words or phrases such as "expect", "seek", "endeavour", "anticipate", "plan", "estimate", "believe", "intend", or stating that certain actions, events or results may, could, would, might or will occur or be taken, or achieved) are not statements of historical fact and may be "forward-looking statements".

Forward-looking statements are based on expectations, estimates and projections at the time the statements are made that involve a number of risks and uncertainties which would cause actual results or events to differ materially from those presently anticipated. Forward-looking statements are based on expectations, estimates and projections at the time the statements are made and involve significant known and unknown risks, uncertainties and assumptions. A number of factors could cause actual results, performance or achievements to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. These include, but are not limited to, the risk factors discussed in the public filings made by Medicenna with the applicable securities commissions and regulators in Canada and the United States, including, but not limited to, the Annual Information Form dated May 14, 2020 filed in Canada on SEDAR at <u>www.edgar.com</u> and in the United States with the United States Securities and Exchange Commission on Edgar at <u>www.sec.gov</u>. Should one or more of these risks or uncertainties materialize, or should assumptions underlying the forward-looking statements prove incorrect, actual results, performance or achievements could vary materially from those expressed or implied by the forward-looking statements prove incorrect, actual results, performance or achievements could vary materially from those expressed or implied by the forward-looking statements contained in this document. These factors should be considered carefully and prospective investors should not place undue reliance on these forward-looking statements.

Although the forward-looking statements contained in this document are based upon what Medicenna currently believes to be reasonable assumptions, Medicenna cannot assure prospective investors that actual results, performance or achievements will be consistent with these forward-looking statements. Furthermore, unless otherwise stated, the forward-looking statements contained in this presentation are made as of the date hereof. Except as required by law, Medicenna does not have any obligation to advise any person if it becomes aware of any inaccuracy in or omission from any forward-looking statement, nor does it intend, or assume any obligation, to update or revise these forward-looking statements to reflect new events, circumstances, information or changes.

Legal Disclaimers

This presentation of Medicenna is for information only and does not, and is not intended to, constitute or form part of, and should not be construed as, an offer or invitation to buy, sell, issue or subscribe for, or the solicitation of an offer to buy, sell or issue, subscribe for or otherwise acquire any securities in any jurisdiction in which such offer, solicitation or sale would be unlawful, nor shall it or any part of it be relied upon in connection with or act as any inducement to enter into any contract or commitment or investment decision whatsoever.

Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources.

Speaker Panel

David A. Reardon, MD

Professor of Medicine Harvard Medical School, Clinical Director of the Center for Neuro-Oncology, Dana-Farber Cancer Institute

John H. Sampson, MD, PhD

Robert H. and Gloria Wilkins Distinguished Professor Dept of Neurosurgery, Co-leader Duke Cancer Institute Neuro-Oncology program, Duke University School of Medicine

Ruthie Davi, PhD

Vice President, Data Science at Acorn AI, a Medidata company

Amy McKee, M.D.

VP, Regulatory Consulting Services, Parexel

- Welcome message and introduction of KOLs
- GBM Background & Need for New Therapies (David Reardon)
- Clinical Efficacy of MDNA55 in rGBM (John Sampson)
- Benefits of a Propensity Matched External Control Arm (ECA) (Ruthie Davi)
- Incorporation of an ECA in a Planned rGBM Registration Trial (Amy McKee)
- Medicenna Overview (Fahar Merchant)
- Q&A

GBM Background & Need for New Therapies

David A. Reardon, MD

Professor of Medicine Harvard Medical School, Clinical Director of the Center for Neuro-Oncology Dana-Farber Cancer Institute

Therapeutic Challenges of GBM

- GBM is the most aggressive primary brain tumor characterized by rapid proliferation of undifferentiated cells, extensive infiltration and a high propensity to recur
- Blood Brain Barrier (BBB) blocks transport of large molecular therapies to the tumor
- Recurrent GBM patients have a compromised immune system following chemo-radiation which is further exacerbated by steroid use
- Tumor microenvironment (TME) comprises a majority of GBM tumor mass; the TME provides an immunosuppressive environment by supplying growth factors and nutrients to support tumor growth and survival¹.
- GBM is heterogeneous with a highly complex tumor biology
 - o IDH mutated vs. wild-type
 - o MGMT promoter methylated vs. unmethylated
- 1) Kennedy et al, JCO, 2013

Current Treatment Strategies for GBM are Ineffective

* Expression of the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is responsible for resistance to Temodar used in GBM treatment.

Treatments for GBM and rGBM

Very high Unmet Need - No available treatment options for GBM have a meaningful survival benefit

Newly Diagnosed GBM

- Treatments focus on preserving quality of life, neurological function, extending survival
- Standard of care (SOC) consists of:
 - Maximal resection possible
 - o Radiotherapy
 - \circ Temozolomide
 - o Gliadel
 - o Optune

Recurrent GBM*

- Virtually all patients relapse
- No defined SOC
- Therapies include:
 - o Avastin
 - \circ Lomustine
 - o Gliadel
 - o Optune
 - Salvage therapies (radiotherapy, temozolomide)
 - o Experimental therapies

^{*} Treatment options following recurrence are very limited and outcome generally unsatisfactory. The median overall survival (OS) is estimated to be 6-10 months with approved therapies

Key Prognostic Factors for GBM

CLINICAL	PROGNOSTIC ASSOCIATION				
FACTORS	FAVORABLE	POOR			
Younger Age	۲				
Older Age		X			
Higher KPS	۲				
Lower KPS		X			
Tumor resectability	۲				
Not eligible for resection		X			

GENETIC FACTORS	PROGNOSTIC ASSOCIATION			
	FAVORABLE	POOR		
Secondary GBM	۲			
Primary <i>de novo</i> GBM		X		
IDH gene Mutation	۲			
IDH gene Wild-type		X		
MGMT methylated	۲			
MGMT unmethylated		X		
IL4R Low-expression	۲			
IL4R Over-expression		X		

Primary de novo GBM is Associated with Poor Survival

Data of 340 patients with newly-diagnosed GBM were retrospectively analyzed. GBM type (*de novo* or secondary) was suggested to influence survival by univariate analysis.

No Surgery at Relapse Lowers Survival

Van Linde et al. J. Neurooncol, 2017

Data of 299 patients recurrent GBM were retrospectively analyzed. Different treatments were suggested to influence survival by univariate analysis.

High Steroid Use Negatively Impacts Survival

Overall Survival with respect to dexamethasone requirement from recurrent GBM subjects enrolled in the phase III with Best Standard of Care (BSC) chemotherapy (NCT00379470).

Unmethylated MGMT Promoter Associated with Poor Prognosis

Hegi et al. NEJM, 2005

Overall survival of 206 patients with newly diagnosed GBM for whom MGMT status could be evaluated irrespective of treatment assignment (RT or RT/TMZ).

GBM with *IDH* Wild-Type Status Associated with Aggressive GBM

Number and frequency of IDH1 and IDH2 mutations in gliomas and other types of tumors. Roman numerals in parentheses are the tumor grades according to histopathological and clinical criteria established by the World Health Organization.

Survival of adult patients with GBM with or without IDH gene mutations. Median survival was 31 months for the 14 patients with mutated IDH1/2, as compared with 15 months for the 115 patients with wild-type IDH1/2

Yan et al. NEJM, 2009

IL4R is Expressed in Majority of Brain Tumors, Including GBM

> 300 Patient Biopsies Analyzed Show IL-4R Over-Expression¹⁻⁷

Glioblastoma	Mixed Adult Glioma >83%	Mixed Pediatric Glioma 76%	Pediatric DIPG
Medulloblastoma	Adult Pituitary Adenoma 100%	Meningioma	Normal Brain Tissue 0%

- 1. Joshi BH, et. al. Cancer Res 2001;61:8058-8061.
- 2. Puri RK, et. al., Cancer Res 1996;56:5631-5637.
- 3. Kawakami M, et. al., Cancer. 2004 Sep 1; 101(5):1036-42.
- 4. Berlow NE, et al. PLoS One. 2018 Apr 5; 13(4):e0193565.

- 5. Joshi BH, et. al. British J of Cancer (2002) 86, 285 –291.
- 6. Chen L, et al. Neurosci Lett. 2007 Apr 24; 417 (1):30-5.
- 7. Puri S, et. al., Cancer. 2005 May 15; 103(10):2132-42.

High IL4R α Expression Predicts Poor Survival in GBM

16

TME-Infiltrating MDSCs Express IL4R and Predict Poor Survival in GBM

TME-MDSCs show 12-fold increase in IL-4Rα expression compared to splenic myeloid cells

Surface expression of IL-4Ra on tumor-infiltrating and splenic CD11b+/Gr-1+ MDSCs from GL26 tumor-bearing mice.

Kamran N, et. al., (2017). Mol Ther 25:232-248

Dana-Farber

MDSC gene signature (based on the combined positive expression of CD11b, CD33, CD45, CD244, and CXCR2) negatively correlates with GBM patient prognosis. Statistical significance of survival was based on log-rank analysis. (N=112)

Otvos B et. al., (2016). Stem Cells 34:2026–2039

Prior Ph 3 Trials in GBM and rGBM

Failed Phase 3 Trials in rGBM with OS as Primary Endpoint (conducted between 2003 – 2019)

Agent (Sponsor)	Target/Class	Study Design	Control Arm	Total Subjects Enrolled
Edotecarin (Pfizer)	Topoisomerase I inhibitor	1:1 randomization	TMZ, Camustine, or LOM	118 (59 in SOC)
IL13-PE38QQR (INSYS Therapeutics)	IL13R-targeted toxin	2:1 randomization	Gliadel	296 (104 in SOC)
Bevacizumab (EORTC)	VEGF inhibitor	2:1 randomization	LOM	437 (149 in SOC)
Tumor Treating Fields (Novocure)	Device	1:1 randomization	Best active chemotherapy	237 (117 in SOC)
Toca 511 + Toca FC (Tocagen)	Retroviral vector	1:1 randomization	TMZ, LOM, or BEV	403 (202 in SOC)
VB-111 (VBL Therapeutics)	Angiogenesis inhibitor	1:1 randomization	BEV	256 (128 in SOC)
Nivolumab (BMS)	PD-1 inhibitor	1:1 randomization	BEV	369 (185 in SOC)

Overcoming the Pitfalls of Prior GBM Ph 3 Clinical Studies

- Ph 3 studies have less restrictive inclusion/exclusion criteria compared to Ph 2 due to need for faster enrolment
- False efficacy signal in Ph 2 (especially single arm studies) leading to Ph 3 efficacy failure
 - $_{\odot}$ For locally administered drugs, there was no method to ensure efficient drug delivery
 - o For orally or systemically administered drugs, BBB blocks transport of therapy to tumor
 - Absence of rational biomarkers to predict benefit
 - Inadequacy to recognize importance of the TME; need therapy to target both TME and the tumor
- A major contributor to the high failure rate is inadequate Ph 2 program that provides sub-optimal information for the "go/no go" decision to move to Ph 3 and the design of the Ph 3 trial

Clinical Efficacy of MDNA55 in rGBM

John H. Sampson, MD, PhD

Robert H. and Gloria Wilkins Distinguished Professor Dept of Neurosurgery and President of the Private Diagnostic Clinic Duke University School of Medicine

MDNA55: A Targeted Immunotherapy for GBM

MDNA55

Targets the IL4R, which is expressed in brain tumors and in the tumor microenvironment (TME), but not the healthy brain

Highly Selective

Avoids off-target toxicity

Disrupts the TME

By targeting IL4R positive cells found throughout the TME, MDNA55 unblinds the tumor to the body's immune system

Sustained Immune Memory Response

Anti-tumor immunity is initiated and remains active after MDNA55 is cleared

Targeting Domain Circularly Permuted Interleukin-4 (cplL-4)

Lethal Payload

Catalytic domain of *Pseudomonas* Exotoxin A (FDA approved Moxetumomab pasudotox)

> Efficient intracellular delivery of toxin payload

MDNA55-05 Phase 2b Study Design

Open-Label Single Arm Study in Recurrent GBM Patients (n=47) (NCT02858895)

High-Flow Image Guided CED Improves Distribution

PAST STUDIES 1st Generation CED

Inaccurate catheter placement Drug leakage due to backflow Inadequate tumor coverage

Image-guided catheter placement

New catheters prevent backflow

Real-time monitoring ensures tumor coverage

CURRENT STUDIES 2nd Generation High-flow CED

Saito and Tominaga (2012), Neurol Med Chir (Tokyo) 52, 531

MDNA55-05 Demographics and Safety

Patient Demographics	N=44		
Age (median, range)	55 years (34 – 77)		
Sex (Male)	27 / 44 (61%)		
KPS at Enrolment: 70, 80 90, 100	22 / 44 (50%) 22 / 44 (50%)		
De novo GBM	44 / 44 (100%)		
Poor candidates for repeat surgery	44 / 44 (100%)		
<i>IDH</i> Wild-type	37 / 37 (100%)		
Unmethylated MGMT	23 / 40 (58%)		
IL4R over-expression	21 / 40 (53%)		
Steroid use > 4mg/day	23 / 44 (52%)		
Max Tumor Diameter*	29.6 mm (8 – 59)		
# Prior Relapse: 1 , 2	35 (80%) , 9 (20%)		

MDNA55-05 Safety Profile

- No systemic toxicities
- No clinically significant laboratory abnormalities
- Drug-related AEs were primarily neurological/aggravation of pre-existing neurological deficits characteristic with GBM; manageable with standard measures.

Related AEs ≥ Grade 3 Occurring in ≥ 5% Subjects	Total N=47 [n (%)]
# of Subjects	10 (21.3)
Nervous system disorders	10 (21.3)
Brain Edema / Hydrocephalus	4 (8.5)
Hemiparesis	3 (6.3)
Seizure	3 (6.3)

*Based on central tumor assessments

Effect of MDNA55 Dose and IL4R Expression on Survival

Months Since MDNA55 Treatment

Duke University School of Medicine

MDNA55 Prolongs Survival Vs Eligibility-Matched External Control Arm (ECA)

2-Year Survival Rate > 20% in IL4RHi + IL4R^{Lo/HD} Subgroup

GROUP	N	mOS	OS-12	OS-24
MDNA55	32	14.5*	63%	24%
ECA*	40	7.0	18%	10%

* Survival calculated from date of relapse. Median OS from time of MDNA55 treatment is 14.0 months; OS-12 = 56%; OS-24 = 20%

 ECA comprised of patients meeting the same eligibility criteria of the Phase 2b study (≥ 18 yrs old, de novo GBM, 1st or 2nd relapse, not indicated for resection, KPS ≥ 70, IDH wild-type, Tumor size ≥1cm x ≤ 4cm, archived tissue from initial Dx) and received treatment at eligible relapse that included approved therapies (monotherapy or combination) for rGBM

MDNA55 is Effective in MGMT Promoter Unmethylated rGBM

MDNA55 is Potent in a Temozolomide-Resistant Population

GROUP	N	mOS	OS-12	OS-24
MDNA55 – <i>MGMT</i> Unmethyl	17	15.4*	71%	22%
ECA* – <i>MGMT</i> Unmethyl	11	6.2	9%	9%

* Survival calculated from date of relapse. Median OS from time of MDNA55 treatment is 14.9 months; OS-12 = 65%; OS-24 = 22%

 ECA comprised of patients meeting the same eligibility criteria of the Phase 2b study (≥ 18 yrs old, de novo GBM, 1st or 2nd relapse, not indicated for resection, KPS ≥ 70, IDH wild-type, Tumor size ≥1cm x ≤ 4cm, archived tissue from initial Dx) and received treatment at eligible relapse that included approved therapies (monotherapy or combination) for rGBM

Low-Dose Transient Avastin Following MDNA55 Treatment Extends Survival in IL4R^{Hi} + IL4R^{Lo/HD} Subgroup

GROUP	Ν	mOS	OS-12	OS-24
MDNA55 – On-study Low Dose Avastin Use	8	18.6	63%	38%
ECA– No On-study Avastin Use	7	6.1	43%	NE

- In the higher concentration cohorts (6 and 9 µg/mL; n=17), transient use of low-dose Avastin (5 mg/kg q2w or 7.5 mg/kg q3w) was allowed for management
 of symptom control and/or steroid sparing.
- Median number of cycles of Avastin was 3 cycles in both groups.
- In the higher concentration cohorts, 10 patients had Low IL4R, 5 patients had High IL4R, and 2 patients were unknown.

Tumor Control Following Pseudo-Progression: IL4R^{Hi} + IL4R^{Lo/HD} Subgroup

Shown are tumor responses assessed from nadir based on radiologic imaging only

Prolonged Progression-Free Survival After MDNA55 Treatment

Increase of > 100% in PFS-12 Compared to Standard Therapies

Therapy	N	mPFS	PFS-12			
MDNA55 Groups						
All Subjects	41	3.6*	27%			
IL4R ^{Hi} + IL4R ^{Lo/HD}	32	3.0*	24%			
Approved Therapies						
Avastin ¹	85	4.2	10%**			
Avastin ²	48	4.0	10%**			
Lomustine ³ 149 1.5 2%**						
Avastin + Lomustine ³	288	4.2	10%**			

* Assessed by mRANO criteria using radiologic data only

** Approximations based on Kaplan-Meier curve.

1) Friedman et al., 2009; 2) Kreisl et al. 2008, 3) Wick 2017

Encouraging Survival Results Compared to Approved Therapies

Benefits of a Propensity Matched External Control Arm (ECA)

Ruthie Davi, PhD Vice President, Data Science at Acorn AI, a Medidata company

Retrospective Matched-External Control Arm Study

For Comparison of Survival Against MDNA55-05 Study

Construction of the ECA

Baseline Characteristics used for Propensity Matching

- Age
- Sex
- KPS
- MGMT methylation status
- IL4R expression level
- Time from initial diagnosis to relapse
- Number of prior relapses
- Extent of resection at initial diagnosis
- Tumor size at relapse
- Tumor location at relapse
- Steroid use prior to treatment

STEP 1: Data preparation: data feasibility and quality, mapping, standardization, covariates

STEP 2: Estimate propensity scores: statistical models

STEP 3: Propensity score balancing algorithm - weighting

STEP 4: Evaluation of balance in baseline characteristics

STEP 5: Estimate treatment effect (outcome analysis), e.g., survival analysis for overall survival

Weighted Baseline Characteristics are Well Matched

Baseline Demographic and Disease Characteristics

Weighted Survival Analysis: All-Comers

Propensity score weighted estimates:

Group	Median (months)		Log- p	rank test -value
MDNA55 (n=43)	12.4	12.4		1426
ECA (n=40.8)	7.2		0.1420	
Comparison	Hazard Ratio	d Ratio 95% Confidence		ence Limits
MDNA55 vs ECA	0.634		0.392	1.026

Weighted Survival Analysis: IL4R^{Hi} + IL4R^{Lo/HD} Population

Adjusted Product-Limit Survival Estimates

Propensity score weighted estimates:

Group	Median (months)		Group Median (months)		Log- p	-rank test -value
MDNA55 (n=32)	15.7	5.7		1477		
ECA (n=33.86)	7.2		0.1177			
Comparison	Hazard Ratio	9	95% Confidence Limits			
MDNA55 vs ECA	0.523		0.300	0.913		

Incorporation of an ECA in a Planned rGBM Registration Trial

Amy McKee, M.D. VP, Regulatory Consulting Services

© 2020 Parexel International Corporation / CONFIDENTIAL

Challenges Associated with a Traditional Randomized Controlled Trial (RCT) in rGBM

- Current NCCN guidelines specify "efficacy of SOC for rGBM is suboptimal and consideration of clinical trials is highly encouraged"
- Very high unmet need and dismal prognosis result in patients seeking experimental therapy in a trial where there is no risk of randomization to a control SOC arm
- > Blinding may be unfeasible (i.e. due to method of administration) inability to blind undermines the purpose of randomization
- Withdrawal prior to study therapy initiation of a significant percentage of participants randomized to the control arm may jeopardize the validity of the control arm experience and thereby undermine the value of a randomized trial design for the trial in question.
- Disproportionate discontinuation from SOC arm has been reported as a cause of study failure in GBM studies

Planned MDNA55 Phase 3 Trial – Hybrid Design with ECA

* Pooled control arm

SOC therapies allowed:

- Bevacizumab (Avastin®)
- Lomustine (CCNU, CeeNU[®], Gleostine[™])
- Temozolomide (Temodar®)
- Tumor Treating Fields (Optune®)
- Radiation Therapy

Planned MDNA55 Phase 3 Trial (cont.)

ECA Arm Details

- Subjects for ECA will be identified at same sites enrolling in MDNA55 treatment arm to reduce variability.
- ECA subjects will be required to have been treated for recurrence within 5 yrs to ensure contemporaneity.
- Subject will not be eligible for ECA unless all data capture requirements are met to mitigate risk of missing data.
- All efficacy endpoints including survival for the ECA will remain blinded until all data standardization and propensity score balancing has been completed.

Study Assumptions

- 90% power
- HR of MDNA55 vs. pooled control = 0.65
- 2-sided alpha = 0.05
- Effect size = 4.6 months in mOS time
- Drop-out rate = approximately 5%

Summary

- First randomized hybrid control arm with an ECA component for a registration trial in oncology
- > Trial design retains many elements preferred by FDA for a registration trial
 - > Large proportion of patients randomized
 - > OS endpoint
 - > All data elements required for ECA
- > Keys to FDA's acceptance of trial design
 - > Significant unmet medical need
 - > No substantive change in SOC for rGBM over the time period covered in the ECA
 - > Near-contemporaneous ECA by limiting to last 5 years
 - > Large effect size demonstrated in Phase 2b study
 - > Buy-in and, in fact, encouragement from FDA statistical review group

Medicenna Overview

Fahar Merchant, Ph.D. President & CEO, Medicenna Therapeutics

Expanding Pipeline Anchored by MDNA55 and MDNA11

Candidate	Indication	Discovery	Preclinical	Phase 1	Phase 2	Pivotal
MDNA55 IL-4 Toxin Fusion	Recurrent Glioblastoma (GBM)					
MDNA11 IL-2 Super Agonist	Cancer Immunotherapies					
MDNA413 IL-4/13 Super Antagonist	Solid Tumors					
MDNA132 IL13Rα2 selective IL-13	Solid Tumors					

MDNA55 Trial Design and Market Size Bolster Partnership Strategy

Market Size Estimated at \$2 Billion Annually

Tumor Type	Annual Incidence ¹	Projected Market ²
Recurrent Glioblastoma (rGBM)	33,300	\$650M
Metastatic Brain Cancer ³	91,500	\$1.30B
Pediatric Glioma	3,800	\$50M
Total	133,500	\$2.0B

Brain Cancer Next Steps

Pursue Partnership Strategy for Further Development

1. GLOBOCAN 2012 http://globocan.iarc.fr/Default.aspx

2. U.S., Europe and Japan

3. Metastatic Brain Cancer numbers from colon, breast and kidney cancer only

MDNA11: IL-2 Super Agonist for Cancer Immunotherapy

Next Steps

MDNA11 Next Steps	
Pre-CTA meeting (Complete)	

Initiate Phase 1 clinical trial (Mid 2021)

Report safety, PK/PD and biomarker results from Phase 1 monotherapy study (End 2021)

Advantages of Initiating Phase 1 in the UK

Dose escalation studies can begin at a higher initial dose

Increased prevalence of immune checkpoint inhibitor naïve patients

Trial can expand into the United States after completion of the dose escalation portion

Acknowledgements

John Sampson, MD, PhD & Dina Randazzo, DO Duke University School of Medicine

Nicholas Butowski, MD & Krystof Bankiewicz, MD, PhD, Manish K. Aghi, MD, PhD & John Bringas University of California San Francisco

Achal Achrol, MD & Santosh Kesari, MD, PhD Pacific Neurosciences Institute and John Wayne Cancer Institute

Michael Vogelbaum, MD, PhD Cleveland Clinic

Steven Brem, MD *Hospital of the University of Pennsylvania* Andrew Brenner, MD, PhD & John R. Floyd, MD Cancer Therapy and Research Center at University of Texas at San Antonio

Seunggu Han, MD Oregon Health & Science

Frank Vrionis, MD, PhD & Sajeel Chowdhary, MD Boca Raton Regional Hospital

Miroslaw Zabek, MD Mazovian Brodnowski Hospital

David Reardon, MD Dana-Farber Cancer Institute **Eva Wembacher-Schroder, PhD** *BrainLab, Munich, Germany*

Ruthie Davi, PhD Antara Majumdar, PhD Acorn AI, a Medidata company

Amy McKee, MD Martin Roessner, MS Parexel

Fahar Merchant, PhD Martin Bexon, MBBS Chan Chandhasin, PhD Nina Merchant, MSc Melissa Coello, BS Medicenna Therapeutics

.....And most of all, to the patients & their families

This study is partly supported by a grant from Cancer Prevention and Research Institute of Texas (CPRIT)

CANCER PREVENTION & RESEARCH INSTITUTE OF TEXAS

Thank you

Fahar Merchant, PhD President and CEO

Elizabeth Williams Chief Financial Officer

