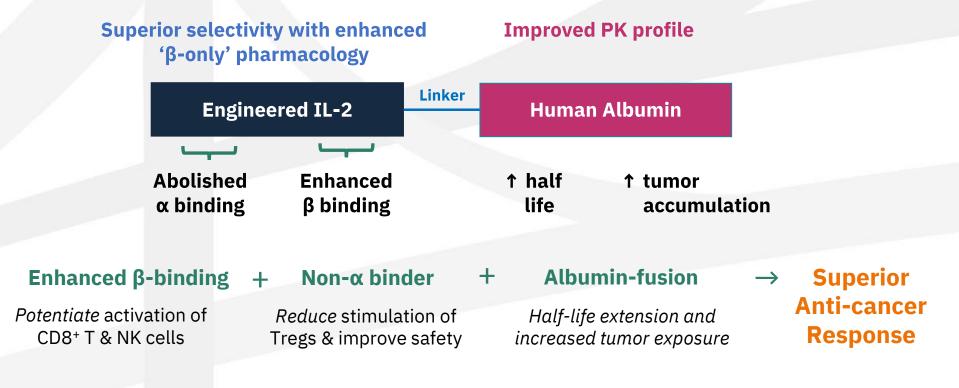


Naples (Italy)
December 4th-5th, 2024

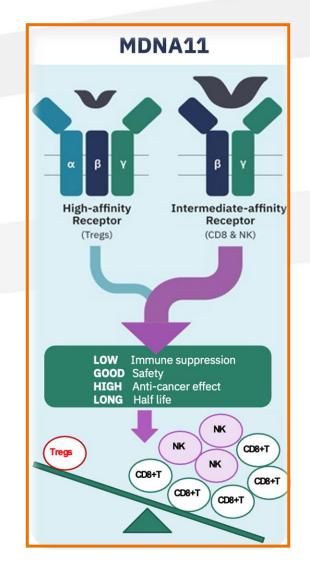
Royal Continental Hotel

Updated Safety and Efficacy Results from the First-in-Human Study of MDNA11 (ABILITY-1), a Next Generation 'Beta-Enhanced Not-Alpha' IL-2 Superkine, Show Single-Agent Activity in Patients with Advanced Solid Tumors

Arash Yavari

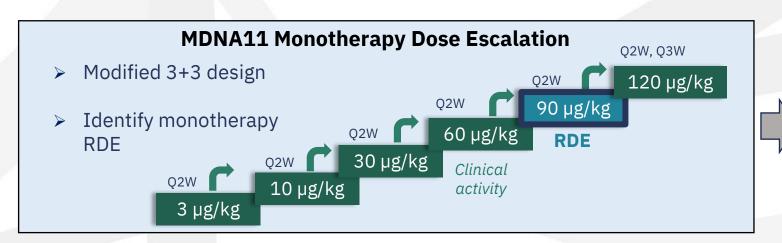

Conflict of Interest Statement

I hereby declare that I do not conduct activities that would involve a conflict of interest with CME-accreditable training, but that in the past 2 (two) years I have received the funding listed below from the following sources:


- 1. Employment/other financial University of Oxford, Imbria, Weatherden
- 2. Research/grant funding SBI Pharmaceuticals
- 3. Advisory role Medicenna Therapeutics

MDNA11: A Long-acting ' β -enhanced Not- α ' IL-2 Superkine

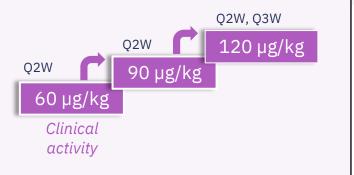
Engineered to overcome key limitations of high dose rhIL-2



MDNA11 demonstrated potent single-agent tumor growth inhibition and additive effect with anti-PD1 in mouse tumor models (Merchant et al., JITC 2022)

ABILITY-1: FIH Trial of MDNA11 in Advanced Solid Tumors

ABILITY-1: A Beta-only IL-2 ImmunoTherapY Study (NCT05086692)



Monotherapy Dose Expansion

- MDNA11 @ RDE (90 μg/kg Q2W) in selected CPI resistant solid tumors:
 - Melanoma
 - Non-melanoma skin cancer (cSCC, BCC, MCC)
 - MSI-H/dMMR tumors

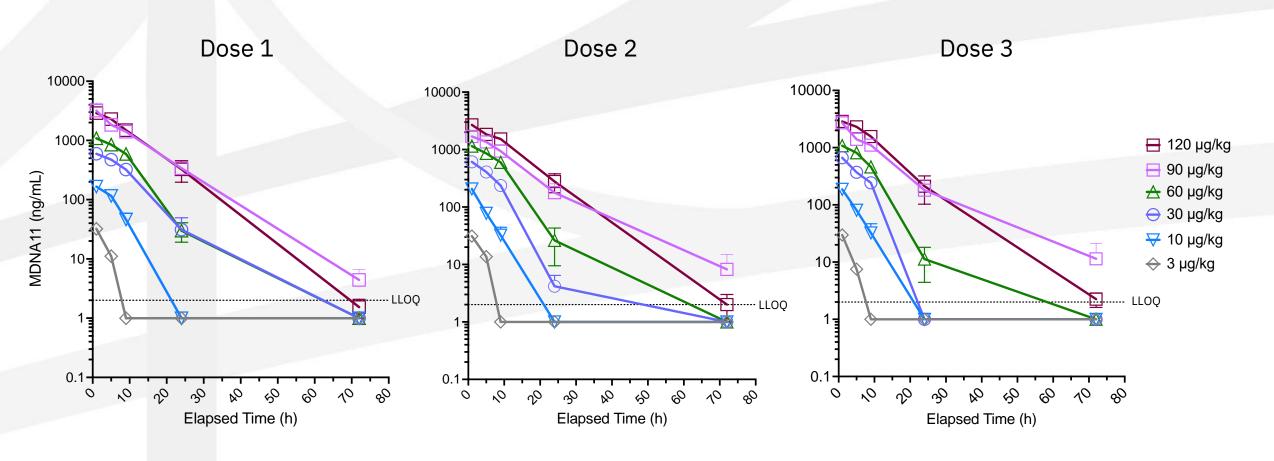
MDNA11 + KEYTRUDA® (pembrolizumab; 400 mg; Q6W) Dose Escalation

- Select CPI resistant and CPInaïve indications
- Identify combination RDE (cRDE)

Combination Dose Expansion

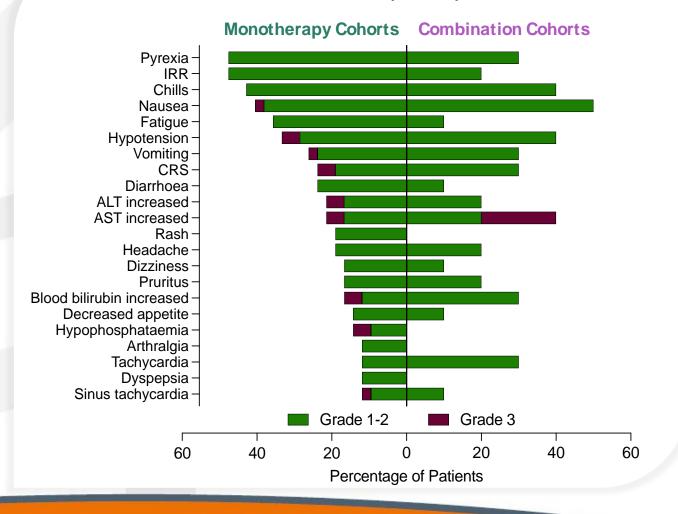
- MDNA11 (cRDE) + pembrolizumab
- Melanoma and other select advanced solid tumors

This study is in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.



Baseline Clinical Characteristics

Baseline characteristics	Monotherapy Dose Escalation/Evaluation (N=30)	Monotherapy Dose Expansion (N = 12)	Combination Dose Escalation/Evaluation (N = 16)
Age, median years (range)	63 (27-78)	64 (48-85)	58 (42-70)
Male, N (%)	22 (73.3%)	8 (66.7%)	6 (37.5%)
Baseline ECOG = 0, N (%)	19 (63.3%)	7 (58.3%)	5 (31.3%)
Baseline ECOG = 1, N (%)	11 (36.6%)	5 (41.7%)	11 (68.7%)
Prior Systemic Therapies	N (%)	N (%)	N (%)
Prior Lines of Therapy: 1	7 (23.3%)	6 (50%)	5 (31.3%)
Prior Lines of Therapy: ≥2	23 (76.7%) [range: 2-4]	6 (50%) [range: 2-7]	11 (68.7%) [range: 2-6]
Immunotherapy:	24 (80%)	12 (100%)	10 (62.5%)
Targeted Therapy	13 (43.3%)	5 (41.7%)	9 (56.3%)
Chemotherapy	12 (40%)	4 (33.3%)	14 (87.5%)
Primary Tumor Type	N (%)	N (%)	N (%)
	Melanoma: 16 (53.3 %)	Melanoma: 4 (33.3%)	Endometrial: 3 (18.8%)
	NSCLC: 3 (10%)	MSI-H cancer: 4 (33.3%)	NSCLC: 2 (12.5%)
	PDAC: 3 (10%)	Non-melanoma skin cancers: 4 (33.3%)	SCC (ovarian, anal): 2 (12.5%)
	RCC: 2 (6.6%)		Ovarian cancer: 2 (12.5%)
	Sarcoma: 2 (6.6%)		Pleural mesothelioma: 2 (12.5%)
	Ovarian cancer: 2(6.6%)]	TNBC: 1 (6.3%)
	Tonsillar SCC: 1 (3.3%)]	Esophageal cancer: 1 (6.3%)
	GEJ adenocarcinoma: 1 (3.3%)	1	Colon cancer: 1 (6.3%)
		1	Gastric: 1 (6.3%)
			Testicular: 1 (6.3%)

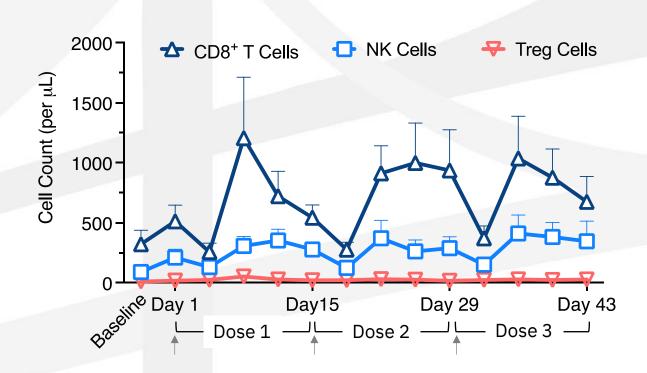

Dose-Dependent Increase in MDNA11 Exposure

Consistent PK profile following repeat dose administration

Desirable Safety Profile and No Dose Limiting Toxicities (DLTs)

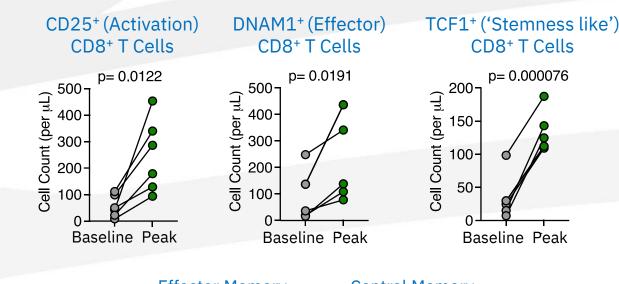
Treatment Related Adverse Events (TRAEs) in ≥ 10% of Patients

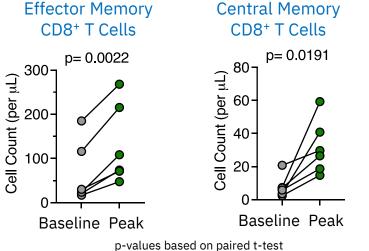
Monotherapy Safety Profile


- Majority TRAEs were Grade 1-2 (92.3%) and resolved within 48 hours
- Grade 3 liver function test elevations (ALT/AST) were asymptomatic and transient
- Grade 3 hypotension in patients with adrenal insufficiency
- No non-laboratory grade 4 TRAEs

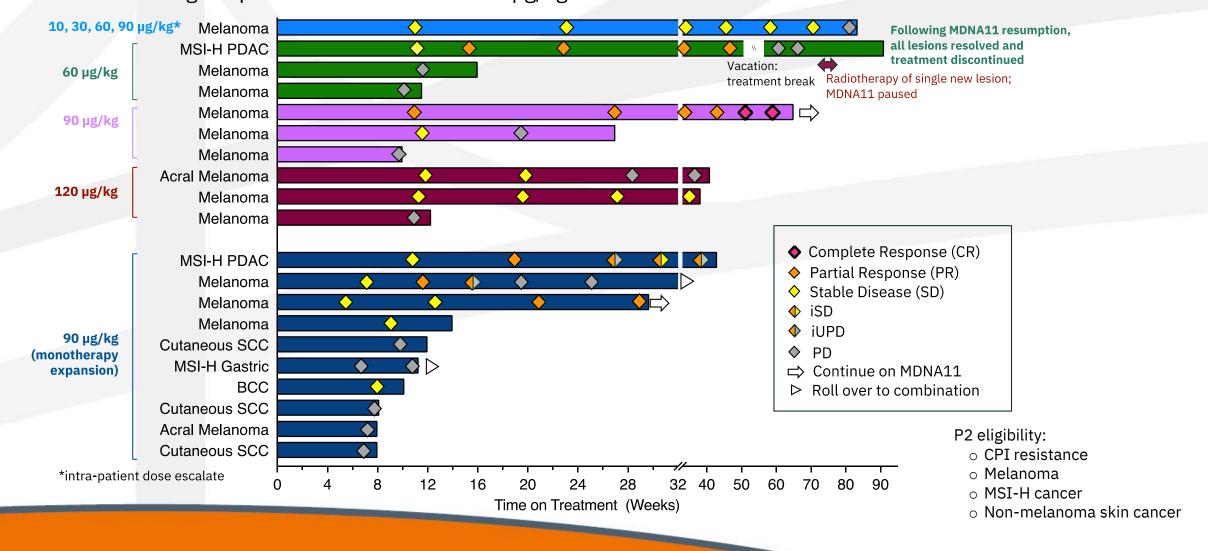
Combination Safety Profile

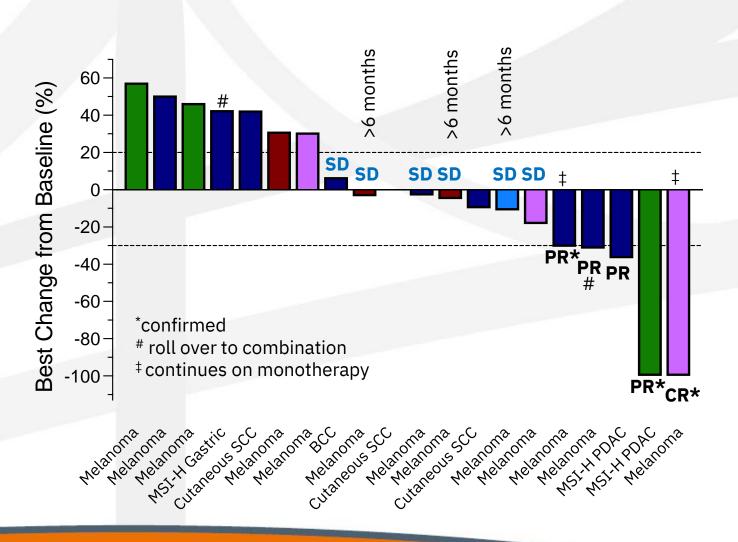
- Majority TRAEs were Grade 1-2 (93.7%) and resolved within 48 hours
- Grade 3 liver function test elevations were asymptomatic and transient
- No Grade 4 non-lab TRAEs
- No new safety signals in combination cohorts


Single-agent MDNA11 Preferentially Expands Immune Effector Cells


Patients Treated with MDNA11 90 µg/kg Q2W (Monotherapy RDE)

Analysis of PBMCs processed from whole blood; N = 8.


Patients Treated with MDNA11 ≥ 60 µg/kg Q2W


Monotherapy: Durable Responses in Higher-Dose (≥ 60 µg/kg) P2 Eligible Patients who Progressed on CPI

Phase 2 eligible patients who received ≥ 60 µg/kg MDNA11

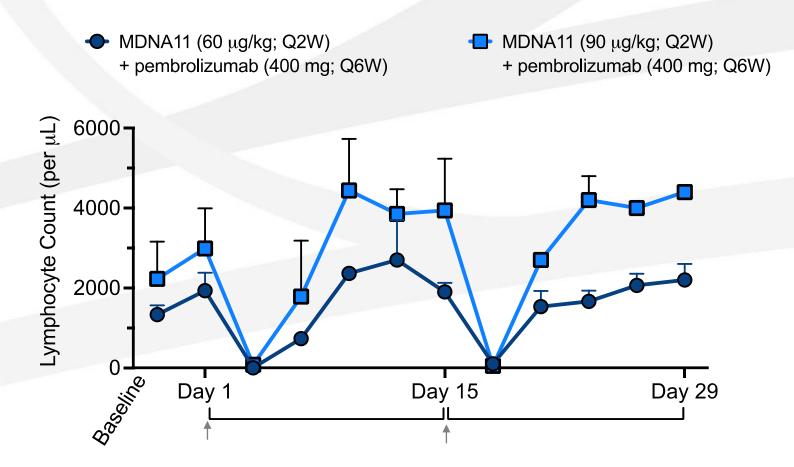
Monotherapy: Objective Response in 5 of 20 Patients (1 CR + 4 PRs)

Best Response in CPI Resistant Patients: Phase 2 Eligible Treated with MDNA11 ≥ 60 µg/kg

Objective Response Rate (ORR):

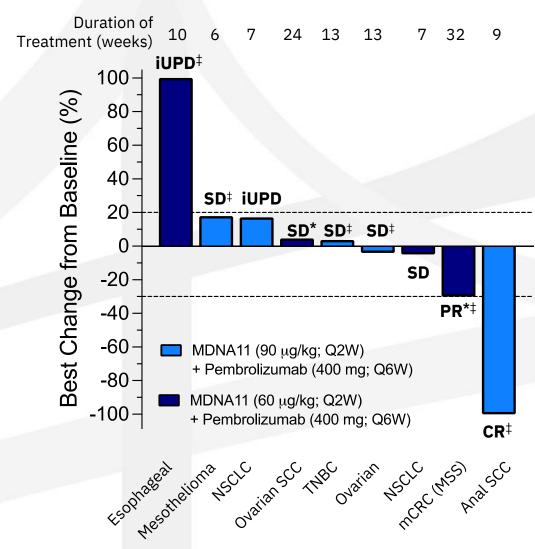
- > 5/20 (25%) [95% CI: 6-44]
 - 1 Complete Response
 - 4 Partial Responses

Clinical Benefit Rate:


- > 8/20 (40%)
 - 1 Complete Response
 - 4 Partial Responses
 - 6 Stable Disease, including
 3 for > 6 months

Objective Response in 3 Cutaneous Melanoma (1 CR + 2 PRs)

- Monotherapy expansion (90 μg/kg)
- **1**20 μg/kg
- 90 μg/kg
- 60 µg/kg
- 10, 30, 60 ,90 μg/kg (intra-patient dose escalation)


Robust Lymphocyte Expansion in Combination Dose Escalation

Dose Dependent Lymphocyte Increase

This study is in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

Combination Dose Escalation: Clinical Activity in Heavily Pretreated Patients

^{*}confirmed; ‡ continues treatment

> Complete Response (CR) in 70 yr M with anal SCC

- Progressed on 2 prior lines of treatment (1L capecitabine/mitomycin + radiation; 2L carboplatin/paclitaxel)
- No prior IO
- CR achieved on first on study evaluable imaging scan; continues on treatment

Confirmed Partial Response (PR) in 52 yr F with MSS mCRC

- Progressed on 2 prior lines of chemotherapy (1L folinate/fluorouracil/oxaliplatin; 2L capecitabine)
- No prior IO
- Continues on treatment

This study is in collaboration with Merck Sharp & Dohme LLC, a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.

Summary

- > **Safety:** MDNA11 has a favorable safety profile in both monotherapy and in combination (no new safety signals) with pembrolizumab with majority (>90%) of TRAEs Grade 1-2 and transient
- ➤ **Pharmacodyanamics:** MDNA11 preferentially expands immune effector cells with significant increase in activated (CD25⁺ and DNAM⁺), 'stemness-like' (TCF-1⁺) and memory CD8⁺ T cells
- > Efficacy (monotherapy): Durable single-agent activity in heavily pre-treated patients:
 - Dbjective response in 25% (1 CR and 4 PR) of ICI-resistant P2 eligible patients treated with ≥ 60 µg/kg Q2W MDNA11
 - > ORR 30% (3 of 10) in ICI-resistant patients in the single-agent dose expansion cohort treated with 90 ug/kg Q2W (RDE)
- ➤ Efficacy (combination with pembrolizumab): objective responses (2 of 9) observed in ongoing dose escalation with CR in anal SCC (historically low IO response) & confirmed PR in MSS mCRC
- > **Next steps:** completion of Combination Dose Escalation and enrolment to Monotherapy Dose Expansion. Initiation of Combination Dose Expansion cohorts

Acknowledgements

Gallipoli Medical Research, Greenslopes, QLD, Australia

Victoria Atkinson

Princess Margaret Hospital, Toronto, ON, Canada

o Philippe Bedard, Lilian Siu

Boca Raton Regional Hospital, Boca Raton, FL, USA

o Warren Brenner, Matthen Mathew, Zdenka Segota

Emory Cancer Institute, Atlanta, GA, USA

o Jacqueline T. Brown

ICON Cancer Centre, South Brisbane, QLD

Jim Coward

UCSF, San Francisco, CA, USA

o Adil Daub

Samsung Medical Center, Seoul, S. Korea

Seung Tae Kim

Chris O'Brien Lifehouse, Camperdown, NSW

Jenny Lee

Seoul National University Bundang Hospital, Seongnam, South Korea

Keyun-Wook Lee

Providence Saint John's Health Center, Santa Monica, CA, USA

o Kim Margolin, Przemyslaw Twardowski

Scientia Clinical Research, Sydney, NSW, Australia

Charlotte Lemech

Faculty of Medicine, Macquarie University, Australia

o John Park

Seoul National University Hospital, Seoul, South Korea

o Do-Youn Oh

Orlando Health Cancer Institute, Orlando, Fl, USA

Sajeve Thomas

Karmanos Cancer Center, Detroit, MI, USA

o Ira Winer

University of Texas MD Anderson Cancer Center, Houston, TX, USA

Hussein Tawbi

Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy

Paolo Ascierto

Merck & Co., Inc., Rahway, NJ, USA

Michael Chisamore

Medicenna Therapeutics, Toronto, ON, Canada

o Rosemina Merchant, Melissa Coello, Minh D. To, Fahar Merchant

Our deepest gratitude to patients and their families.