

February 2024 | Corporate Overview | TSX: MDNA | OTCQB: MDNAF

Disclaimer and Forward-Looking Statements

Certain statements in this presentation may constitute "forward-looking statements" under applicable securities laws. These forward-looking statements include, but are not limited to, information about possible or assumed future results of the Medicenna Therapeutics Corp's (the "Company" or "Medicenna") business, clinical trials, drug development, financial condition, results of operations, liquidity, plans and objectives. Further, any statements that express or involve discussions with respect to predictions, expectations, beliefs, plans, projections, objectives, assumptions or future events or performance (often, but not always, using words or phrases such as "expect", "seek", "endeavour", "anticipate", "plan", "estimate", "believe", "intend", or stating that certain actions, events or results may, could, would, might or will occur or be taken, or achieved) are not statements of historical fact and may be "forward-looking statements".

Forward-looking statements are based on expectations, estimates and projections at the time the statements are made that involve a number of risks and uncertainties which would cause actual results or events to differ materially from those presently anticipated. Forward-looking statements are based on expectations, estimates and projections at the time the statements are made and involve significant known and unknown risks, uncertainties and assumptions. A number of factors could cause actual results, performance or achievements to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. These include, but are not limited to, the risk factors discussed in the public filings made by Medicenna with the applicable securities commissions and regulators in Canada and the United States, including, but not limited to, the Annual Information Form dated May 14, 2020, filed in Canada on SEDAR at <u>www.edgar.com</u> and in the United States with the United States Securities and Exchange Commission on Edgar at <u>www.sec.gov</u>. Should one or more of these risks or uncertainties materialize, or should assumptions underlying the forward-looking statements prove incorrect, actual results, performance or achievements could vary materially from those expressed or implied by the forward-looking statements. These factors should be considered carefully, and prospective investors should not place undue reliance on these forward-looking statements.

Although the forward-looking statements contained in this document are based upon what Medicenna currently believes to be reasonable assumptions, Medicenna cannot assure prospective investors that actual results, performance or achievements will be consistent with these forward-looking statements. Furthermore, unless otherwise stated, the forward-looking statements contained in this presentation are made as of the date hereof. Except as required by law, Medicenna does not have any obligation to advise any person if it becomes aware of any inaccuracy in or omission from any forward-looking statement, nor does it intend, or assume any obligation, to update or revise these forward-looking statements to reflect new events, circumstances, information or changes.

Legal Disclaimers

This presentation of Medicenna is for information only and does not, and is not intended to, constitute or form part of, and should not be construed as, an offer or invitation to buy, sell, issue or subscribe for, or the solicitation of an offer to buy, sell or issue, subscribe for or otherwise acquire any securities in any jurisdiction in which such offer, solicitation or sale would be unlawful, nor shall it or any part of it be relied upon in connection with or act as any inducement to enter into any contract or commitment or investment decision whatsoever. Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources.

OUR MISSION

To leverage our **Superkine Platform** and design lifechanging therapies that transform people's lives and deliver the best possible patient outcomes

Toronto, CA

TSX: MDNA OTCOB: MDNAF

WHO WE ARE

MDNA is a clinical-stage immunotherapy company developing **Superkines** for the treatment of cancer and other diseases with serious unmet needs

PIPELINE OF PROMISING ASSETS

BiSKITsMDNA11Bizaxofusp
(MDNA55)Pre-clinicalPhase 1/2Phase 3-ready

ANTICIPATED 2024 CATALYSTS MDNA11 Phase 1/2 Data

Dose Escalation: Combination with KEYTRUDA® Dose Expansion: Monotherapy, Combination

Pursuing a Partnership for Bizaxofusp Phase 3

MDNA11 | Lead Clinical Asset | Phase 1/2

- a non- α , β -enhanced IL-2 Super Agonist
- stimulates the anti-cancer response (β)
- avoids stimulation of the immunosuppressive response (α)

Bizaxofusp | Lead Clinical Asset | Ready for Phase 3

- an IL-4 Agonist fused with a toxin
- *Trojan Horse* which targets IL-4R expressing tumors causing immunogenic cell death

A Leading Clinical-Stage Immunotherapy Company with a Scalable Superkine Platform

Drug Discovery Engine

Superkine Platform

Directed evolution fine-tunes properties of IL-2, IL-4, IL-13 to generate Superkines

Protein fusion improves PK, adds MOA, and confers new capabilities

BiSKITs*

Creates bi-specifics with Superkines, checkpoint inhibitors or antibodies

BiSKITs target cancers where other immunotherapies have failed

Compelling Clinical Results

MDNA11

A non-α, β-enhanced IL-2 Super Agonist with >20% single-agent response rate

Phase 1/2 ABILITY study: Monotherapy Dose Expansion, KEYTRUDA® Combination

Bizaxofusp (MDNA55)

Phase 3-ready IL-4 fusion toxin for recurrent glioblastoma

Bizaxofusp doubled median overall survival in patients vs. matched external control arm in Phase 2b

Anticipated 2024 Catalysts

MDNA11 Phase 1/2

Preliminary Phase 1/2 Data:

Monotherapy Dose Expansion Combination Dose Escalation Combination Dose Expansion

Bizaxofusp Phase 3

FDA-endorsed Phase 3 design, utilizing an ECA

Secure Breakthrough Designation

EMA Alignment for Phase 3 Trial

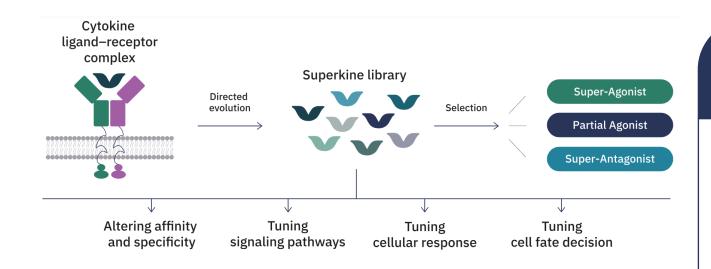
Financial Stability

Cash Runway

Cash and cash equivalents of \$21.8M CAD *(as of 12/31/2023)* provides runway into Q2 2025

Disciplined, strategic capital allocation for our most promising assets

Substantial Insider Ownership (~24% as of 12/31/2023)


2024 MEDICENNA THERAPEUTICS

*<u>Bi</u>functional <u>Super</u>Kines for <u>I</u>mmuno<u>T</u>herapy

Superkine Platform

Transforming IL-2, IL-4 and IL-13 into Druggable Superkines Using Directed Evolution

Our IL-2, IL-4 and IL-13 Superkines are known to modulate immune activity in many diseases, each providing "A Pipeline in a Product" opportunity

Superkine Design and Development

Generate Tunable Superkine Library

Transform interleukins using directed evolution to enhance desired properties

Enhance via Protein Fusion

To improve PK, add a second MOA, or confer new capabilities

Lead Selection & Development

Advance the most promising candidates towards clinical studies

Robust Pipeline of Next Generation Superkines

Candidate	Indication	Discovery	Preclinical	Phase 1	Phase 2	Pivotal
Bizaxofusp (MDNA55) IL-4-Toxin Fusion	Recurrent Glioblastoma (GBM)					
MDNA11 IL-2 Super Agonist monotherapy	Melanoma, cSCC, BCC Merkel cell, MSI-H/dMMR					
MDNA11 IL-2 Super Agonist combo with KEYTRUDA®	Various solid tumors					
MDNA113 Anti PD-1-IL-2 Masked BiSKIT	Various solid tumors expressing IL-13Ra2					
MDNA413 IL-4/13 Pathway Super Antagonist	Oncology and Th2- mediated diseases					
MDNA209 IL-2/15 Pathway Super Antagonist	Autoimmune Diseases					

The Challenges with Other Cytokine Therapies vs. Our Approach

Cytokine Therapy Challenges

Off-target Toxicity

Heterogeneity of IL receptor expression on different immune cell populations and vasculature has posed significant challenges to mitigating severe systemic side effects

Lack of selectivity to receptor subtypes has been a major challenge for prior therapies

Short Half-life

Utility in other immunotherapies has been severely limited by short half-life, requiring frequent administration at a high dose to offset rapid clearance to achieve meaningful clinical response

High dose, frequent administration results in significant **systemic toxicity**

The MDNA Way

Tune | Enhance | Abolish

Our therapies are engineered to be highly selective towards specific targets found within various tumors, the tumor microenvironment, and other desired cell populations

Abolishing binding to off-target pathways prevents toxicity

Half-Life Tumor Accumulation Payloads

Fusion of Superkines with other molecules can add new mechanisms of action, increase halflife, or enhance tumor accumulation

Fusion of Superkines with toxins allows our therapies to deliver toxic payloads directly to tumors

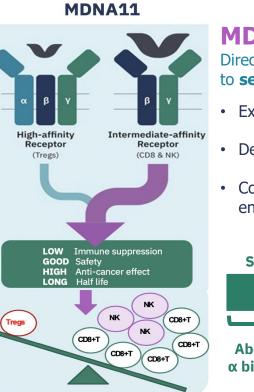
Clinical-Stage Asset in Phase 1/2 with a Monotherapy Treatment Arm and a Combination Arm with KEYTRUDA®

MDNA11

MDNA11's Strong Anti-tumor Activity, Desirable Safety Profile and Convenient Outpatient Dosing Regimen Paves the Way for a Potential Best-in-Class Therapy With Significant Commercial Potential

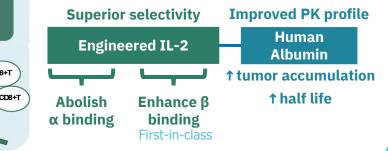
MDNA11: A Non- α , Enhanced- β , IL-2 Super Agonist

A Next Generation IL-2 Agonist Designed to Overcome Prior Challenges


rhIL-2

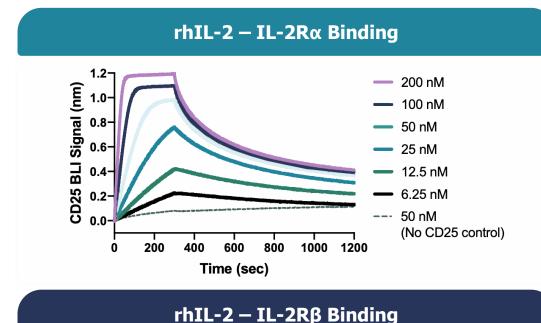
Proleukin® (Iovance)

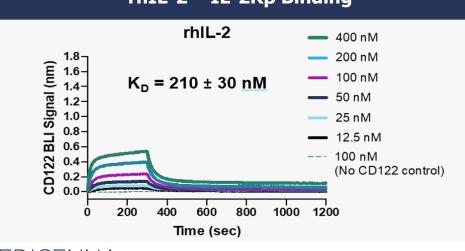
Approved in metastatic melanoma and renal cell carcinoma

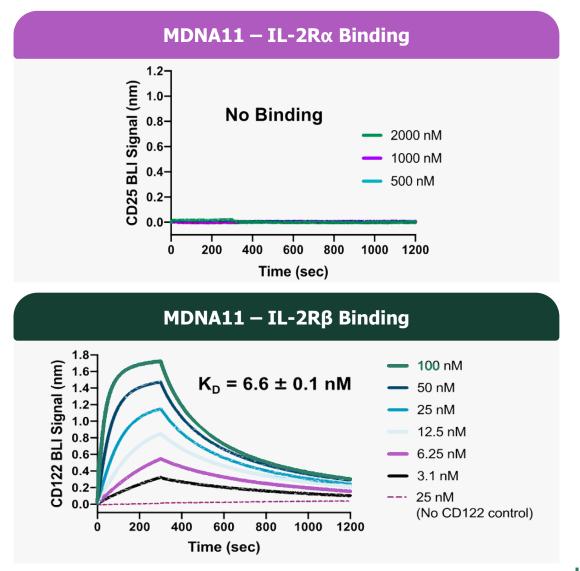

- First approved cancer immunotherapy
- Selectively stimulates IL-2Rα (toxic)
- High systemic toxicity causing vascular leak syndrome due to expression of trimeric IL-2R in lungs and other vasculature
- Extremely Short half-life requiring IV administration every 8 hours for up to 5 days in an ICU setting

MDNA11 V

Directed evolution via **Superkine Platform** to **selectively target IL-2Rβγ**

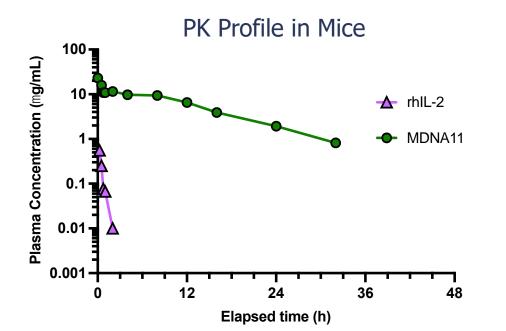

- Expand CD8+ T cells without Tregs
- Desirable Safety Profile
- Combined with albumin to extend half-life and enhance tumor-homing





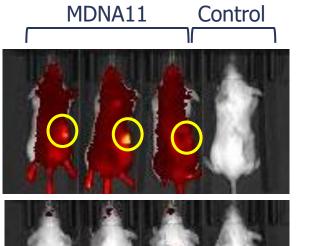
MDNA11's IL-2R Binding is Highly Differentiated vs. Proleukin (rhIL-2)

No IL-2Rα Binding and Enhanced Affinity and Selectivity for IL-2Rβ (CD122) Compared to rhIL-2

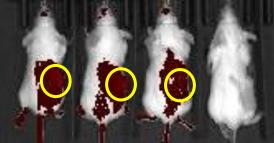


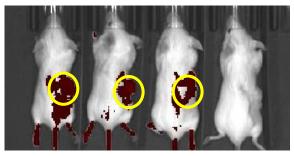
MEDICENNA

Albumin Fusion Improves Half-life and Promotes Tumor Accumulation



	C _{max} (µg/mL)	AUC (µg.hr/mL)	T _{half} (hr)
rhIL-2	5.77	1.07	0.28
MDNA11	23.02	182.3	6.83


Naive C57Bl/6 mice IV dosed at 1 mg/kg IV

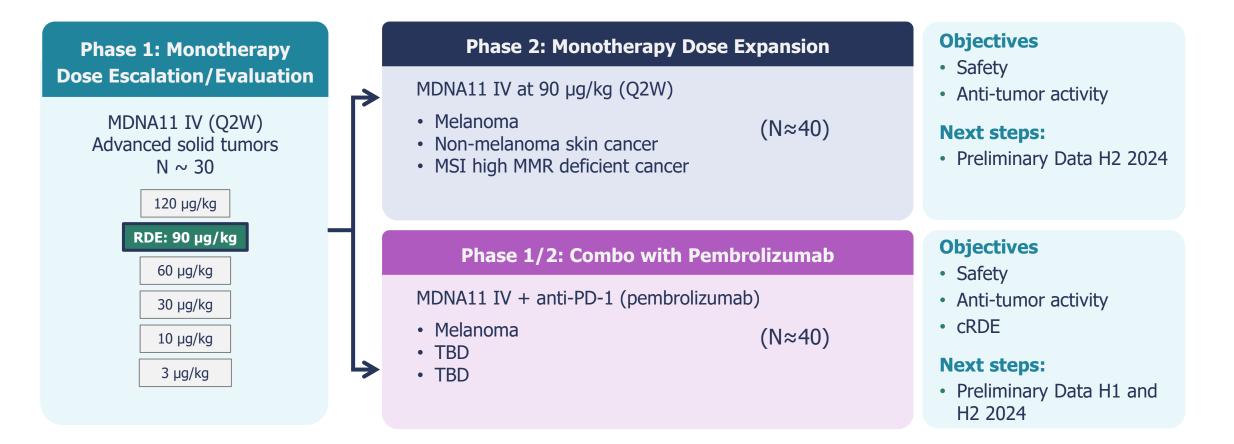

• Albumin-bound paclitaxel (Abraxane) is used for treatment of cancers (Hoy, Drugs 2014; Blair and Deeks, Drugs 2015)

Imaging of CT26 Tumor Bearing Mice

4-hr Post-dose

3 days Post-dose

5 days Post-dose


MDNA11 labelled with VivoTag800 IV dose: 1 mg/kg Tumor size: 150-200 mm³

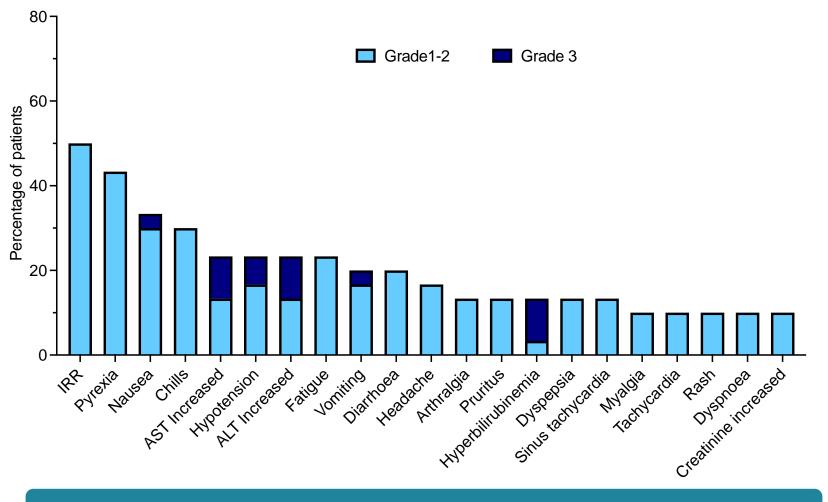
11

ABILITY Phase 1/2 Study: Dose Expansion & Combination with Pembrolizumab

Global, Multi-center, Open-label Study Underway

Baseline Characteristics of Patients in Monotherapy Dose Escalation

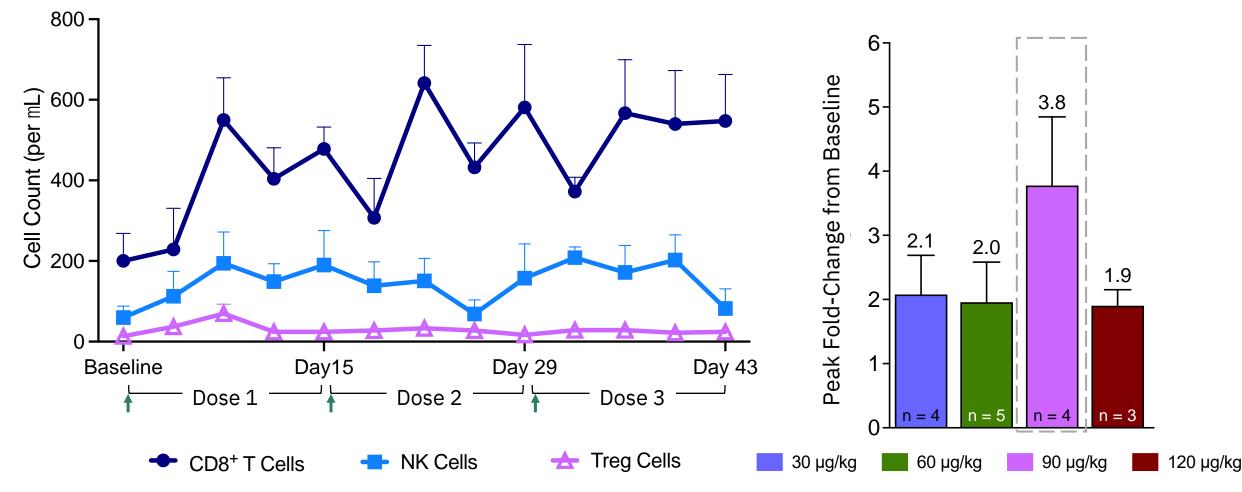
All Patients Have Advanced Solid Tumors and Failed Prior Therapies

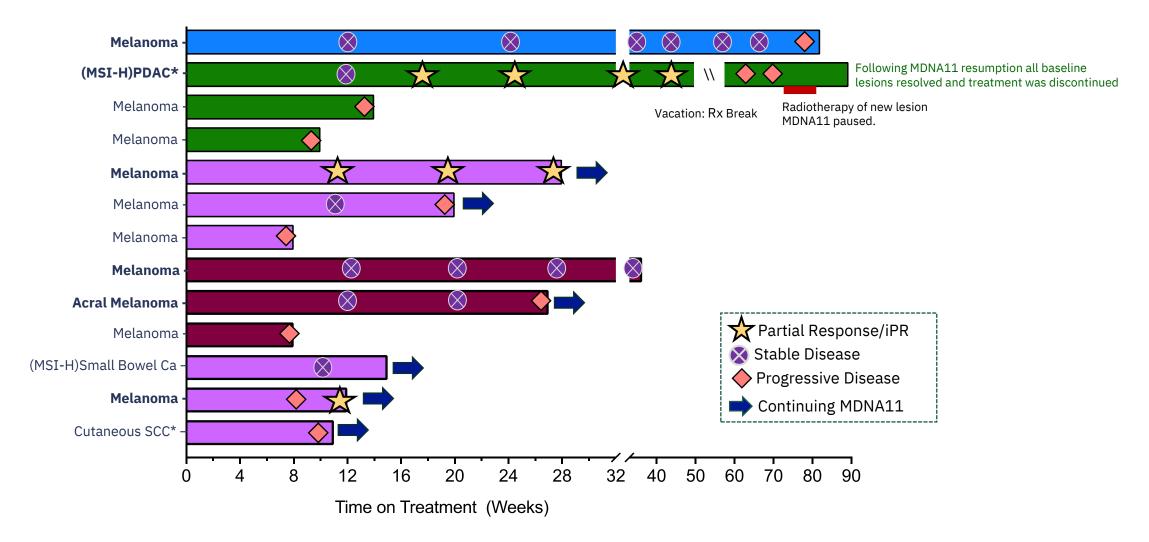

Demographics/Performance			
Median age (range), years	63 (27-78)		
Male (%)	22/30 (73.3%)		
Baseline ECOG = 0	19/30 (63.3%)		
Baseline ECOG = 1	11/30 (36.6%)		

Prior Systemic Therapies	
Prior Lines of Therapy: 1-2	22/30 (73.3%)
Prior Lines of Therapy: 3-4	8/30 (26.6%)
Prior Use of Immunotherapy	22/30 (73.3%)
Prior Use of Targeted Therapy	5/30 (16.6%)
Prior Use of Chemotherapy	15/30 (50%)

Primary Cancer Diagnosis	
Melanoma (14 cutaneous, 1 mucosal; 1 acral)	16/30 (53.3%)
Non-small Cell Lung Cancer (NSCLC)	3/30 (10%)
Pancreatic Ductal Adenocarcinoma (PDAC)	3/30 (10%)
Renal Cell Carcinoma (RCC)	2/30 (6.6%)
Sarcoma (1 pleiomorphic; 1 leiomyosarcoma)	2/30 (6.6%)
Ovarian Cancer (Platinum-resistant)	2/30 (6.6%)
Tonsillar Squamous Cell Carcinoma	1/30 (3.3%)
Gastro-esophageal Adenocarcinoma	1/30 (3.3%)

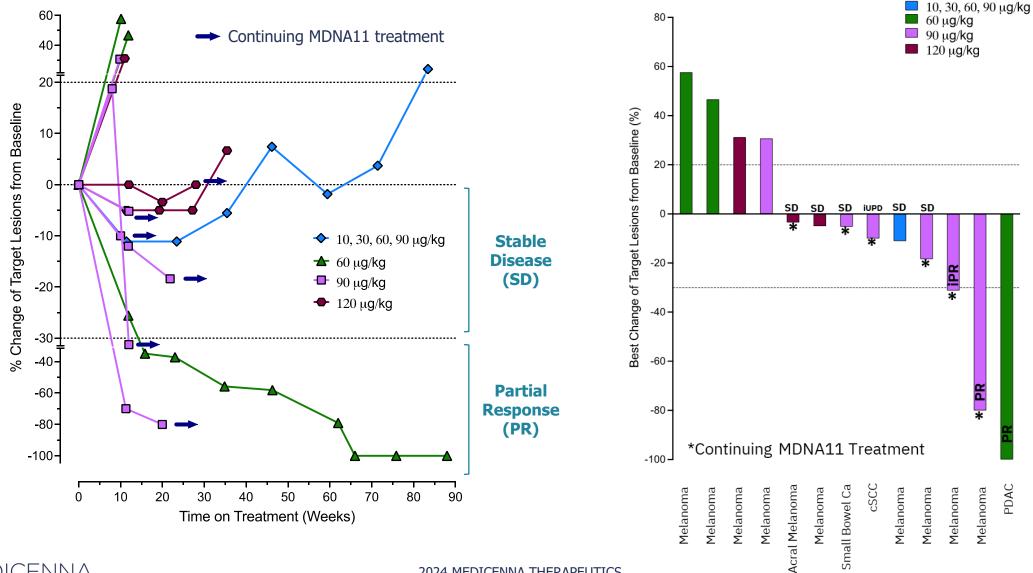
MDNA11 Demonstrates Desirable Safety Profile Across All Doses


95% of AEs were Grade 1-2


Robust CD8⁺ T Cell Expansion and Activation at RDE (90 µg/kg)

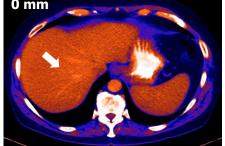
Preferential CD8⁺ T Cell Expansion and Activation Provides Antigen-specific Tumor Cell Killing and Promotes Memory Response

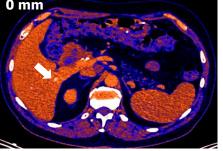
CD25⁺ Activated CD8⁺ T Cells



MDNA11 Monotherapy: Shows Durable Tumor Response in High-Dose ($\geq 60 \mu g/kg$) Phase-2 Eligible Patients with Checkpoint Resistance

Monotherapy: 23% Response Rate (3 PR) and 69% Tumor Control Rate (3 PR, 6 SD) in High-Dose (\geq 60 µg/kg) Phase-2 Eligible Patients


MEDICENNA


17

First Reported IL-2 Therapy Showing Single Agent Response in PDAC

Screening 21 mm 0 mm Target Lesion 1 22 mm 0 mm Target Lesion 2

Week 66

PR observed at Week 16 (60 µg/kg)

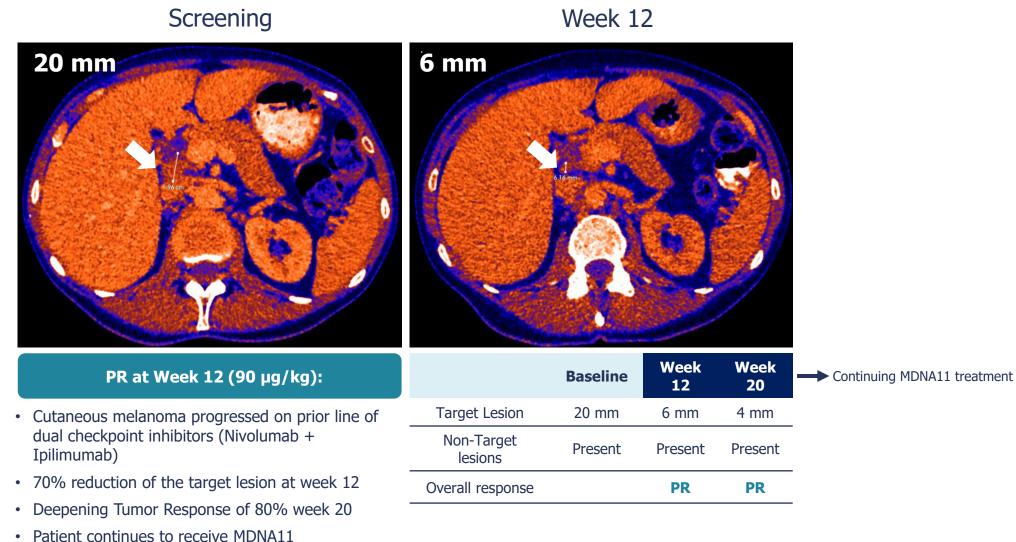
- Pancreatic ductal adenocarcinoma (PDAC, MSI-H) treated with two prior lines:
 - Whipple procedure + Adjunctive • **FOLFIRINOX**
 - 1L: Gemcitabine + nab-Paclitaxel
 - 2L: Pembrolizumab (PD-primary resistant)

Treatment Break:

PR first observed at week 16

100% reduction of 2 target and 1 non-target lesions on MDNA11 alone:

- Patient developed a single new lesion while on treatment break (vacation)
- New lesion received radiotherapy and MDNA11 was resumed
- Following resumption, all baseline lesions were resolved, and treatment was discontinued after Week 88


Treatment Break:

Patient Vacation Radiotherapy for New Lesion from Vacation Break (Week 55 - 62) (Week 67-73) **Baseline Week 12** Week 16 Week 23 Week 35 Week 46 Week 62 Week 66 Week 76 **Week 88** Target lesions 43 mm 27 mm 19 mm 18 mm 0 mm 32 mm 28 mm 9 mm **0** mm 0 mm (Sum of diameters) Non-Target lesion Present Present Present Present Absent Absent Absent Absent Absent Absent New lesion None 17 mm 19 mm 12 mm 8 mm# None None None None None *Not *Not PD **Overall** response SD PR PR PR PR PD Evaluable **Evaluable**

> *Not evaluable as new lesion has received radiotherapy | # Lymph nodes <10 mm are considered normal as per RECIST 1.1 SD, stable disease | PR, partial response | PD, progressive disease

PR at First On-Study Evaluation Scan in Metastatic Melanoma

Target Lesion

MDNA11: an IL-2 Superkine with Single Agent Clinical Activity

Not Alpha, Beta-Enhanced IL-2 Super Agonist	 Engineered as a long-acting potentiator of CD8⁺ effector T cells and NK cells but limit Treg expansion compared to native IL-2
Extended Half-Life and Tumor-Homing	 Convenient Q2W dosing with albumin scaffold extends half-life via FcRn recycling, lowers kidney clearance, and enhances homing to tumor sites and draining lymph nodes
Desirable Safety Profile in Clinic	 Acceptable toxicity with no DLTs, no evidence of cytokine release syndrome or vascular leak syndrome in ongoing monotherapy portion of Phase 1/2 ABILITY study
Single Agent Activity in Ongoing Phase 1/2 Study	 Response Rate of 23% (3/13), Clinical Benefit Rate of 46% (6/13) and Tumor Control Rate of 69% (9/13) in high-dose (≥60 µg/kg), Phase-2 eligible patients with resistance to immune checkpoint therapies
Combination Trial with Checkpoint Inhibitor Initiated	 Preclinical studies show a strong memory response, low immunogenicity and complete tumor regression when MDNA11 is combined with anti-CTLA4 or anti-PD1 therapies

Pursuing a Development and Commercial Partnership

Bizaxofusp (MDNA55)

A Phase 3-Ready Asset with Orphan Drug Status and an FDA-Endorsed Pivotal Phase 3 Trial Design

Bizaxofusp (MDNA55): A Molecular Intratumoral Trojan Horse

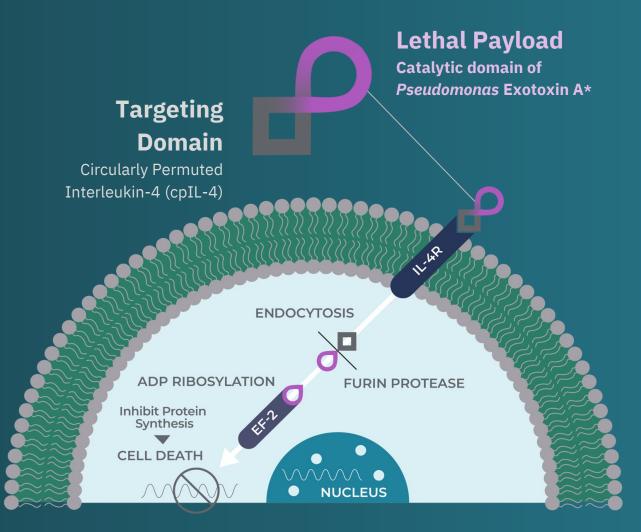
A first-in-class Phase 3-ready Empowered IL-4 Superkine for recurrent glioblastoma (rGBM)

Approach By-Passes BBB

Single intra-tumoral CED infusion **avoids systemic toxicity** and achieves tumor control

Targets IL-4R

Receptor is expressed in brain tumors and immunosuppressive, non-malignant TME, <u>but</u> <u>not in healthy brain cells</u>


Highly Selective Avoids off-target toxicity

Disrupts the TME

Targets IL-4R positive MDSCs in GBM unblinds the immunosuppressive TME

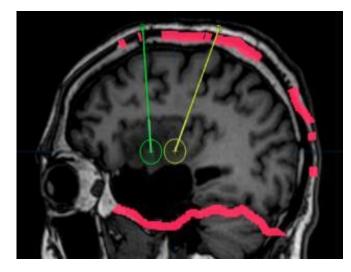
Causes Immunogenic Cell Death

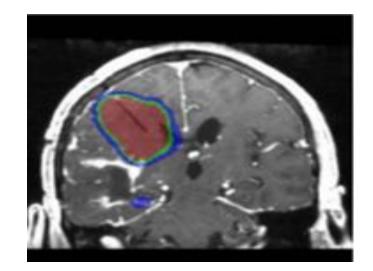
Sustained anti-tumor immunity remains after clearance of bizaxofusp

2024 MEDICENNA THERAPEUTICS

BBB, blood-brain barrier; CED, convection enhanced delivery; TME, tumor microenvironment; MDSCs, myeloid-derived suppressor cells

Bizaxofusp: The Better Option to ADCs for Brain Cancer


Bizaxofusp	Compelling Results	Phase 3 Ready	\$4B Opportunity
GBM is the most aggressive primary brain tumor; 100% of patients relapse following SOC rGBM is uniformly fatal with median OS (mOS) of 6-9 months	Single intra-tumoral treatment By-passes the blood brain barrier No systemic toxicity	FDA-endorsed Phase 3 design, utilizing an ECA Preparing for Phase 3 Pursuing a Partnership	\$800M Market Opportunity (US/EU) Follow-on applications upwards of \$4B: 1 st line for non-resectable GBM
P			IL-4R expressing metastatic brain tumors Market Exclusivity
IL-4R : overexpressed in GBM and TME but not healthy brain tissue	Bizaxofusp doubled mOS to 14.5 months vs matched external control arm (ECA)	Potential for Breakthrough Therapy Designation Has FDA Fast-Track Designation	Orphan Drug Status from EMA and FDA provides up to 11 years of market exclusivity
Bizaxofusp only targets IL-4R expressing tumors causing immunogenic cell death	Strict inclusion criteria: <i>de novo</i> GBM, 1 st or 2 nd relapse non-resectable tumors IDH wild-type only	FDA's Project Orbis allows for swift international adoption	Patent Protection Projected to 2040



23

Bizaxofusp: Localized "One and Done" Delivery By-Passes the BBB

Next Generation High-flow Convection Enhanced Delivery (CED) Achieves Uniform Distribution to Tumoral & Peritumoral Areas

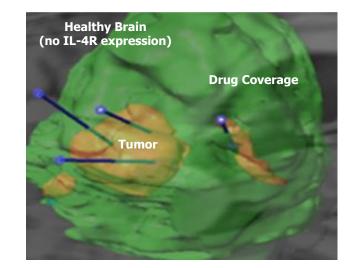


Image guided catheter placement to identify the **ideal catheter trajectory** Unique catheter stepped design to **prevent backflow** **Novel delivery** improves tumor coverage

One-time treatment | Repeat administration has been shown to be safe Minimally invasive CED techniques for catheter placement are similar to those used used for brain tumor biopsies

Bizaxofusp has Demonstrated Favorable Safety in 118 Patients

No Signs of Systemic Toxicity at any Dose in Phase 1/Phase 2/Phase 2b Trials

STUDY	PATIENT	DOSE (µg)
NIH-sponsored Investigator Initiated (U.S.)	Recurrent GBM (n=9)	6 - 720
Multi-Center (U.S./Germany) Phase 1 "Non-resected Trial"	Recurrent HGG No Resection (n=31; 25 rGBM+6 AA)	240 - 900
Multi-Center (U.S./Germany) Phase 2 "Resected Trial"	Recurrent GBM + Resection (n=32)	90 - 300
Multi-Center (U.S./Poland) Phase 2b	Recurrent <i>de novo</i> GBM No Resection (n=46)	18 - 240

Consolidated Safety Profile

- No systemic toxicity at any dose
- No clinically significant laboratory abnormalities
- Most adverse events were due to local effects and similar to those typically seen in this patient population
- Manageable inflammation and edema associated with tumor necrosis
- 2 grade 5 events unrelated to study drug
- MTD established at > 240 µg

Phase 2b study was the most recently completed study

Phase 2b Results Published as the Cover Story in Neuro-Oncology

Editorial

Published in the June 2023 Issue and Received Editor's Choice with a Corresponding Editorial

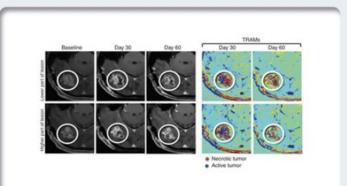
1098 **Neuro-Oncology**

25(6), 1098-1099, 2023 | https://doi.org/10.1093/neuonc/noad043 | Advance Access date 15 February 2023

Phase II trials in the era of glioblastoma immunotherapy: New mechanisms of action, familiar challenges in trial design and tumor response assessment

Stephen J. Bagley[®]

All author affiliations are listed at the end of the article


Corresponding Author: Stephen J. Bagley, MD, MSCE, Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, 10th Floor Perelman Center South Pavilion, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA (sbagley@pennmedicine.upenn.edu).

Cover of June Issue

Volume 25 | Issue 6 | June 2023

Neuro-@ncology

Phase 2b Study Completed Meeting Primary Endpoint

Open-Label Single Arm Study of Bizaxofusp in rGBM Patients (N=47) (NCT02858895)

ELIGIBILITY

- Adults \geq 18 yrs
- de novo GBM
- 1st or 2nd relapse
- No resection
- KPS ≥ 70
- IDH wild-type only
- Failed 1L surgery, radiation, and/or chemotherapy (Stupp Protocol)
- Retrospective IL-4R analysis from initial Dx

TREATMENT

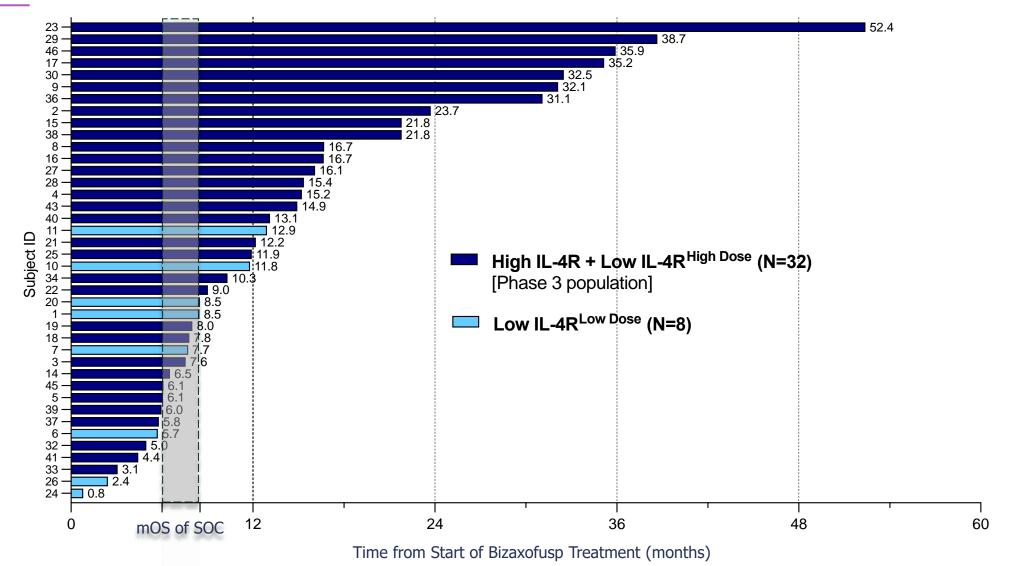
- Image-guided catheter placement
- Monitor real-time drug distribution with co-infusion of Magnevist [®]
- Single infusion (median 26.5 hrs.)
- Total Dose range: 18-240µg
- Transient low-dose bevacizumab allowed for symptom control and/or steroid sparing

ENDPOINTS

1º Endpoint

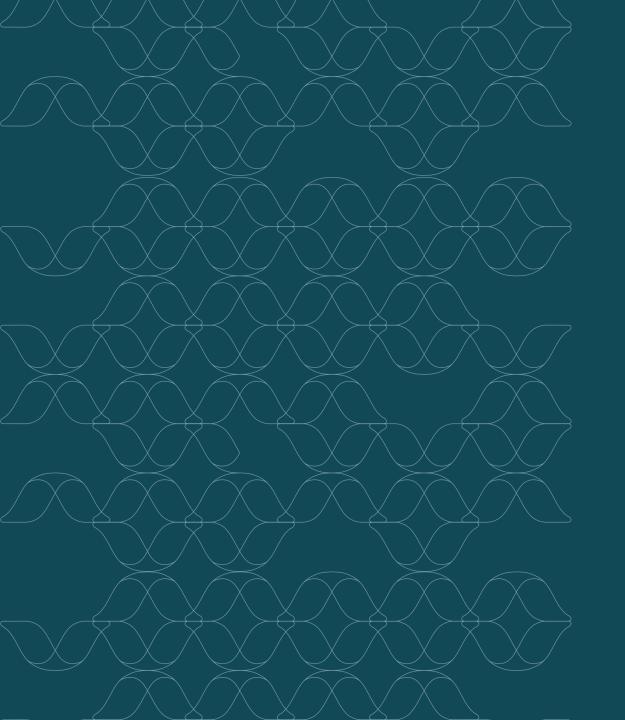
• OS

2° Endpoint


- ORR
- PFS
- OS vs. IL4R expression
- Safety

Phase 2b purposefully only included patients with characteristics associated with worse clinical outcomes

Increases Confidence in Phase 2b Data and Reduces Phase 3 Risk



Bizaxofusp^{High Dose} Improves Overall Survival Regardless of IL-4R Expression

2024 MEDICENNA THERAPEUTICS

Bizaxofusp (MDNA55)

Retrospective Study with an Eligibility Matched ECA: Comparison of Survival in the Phase 2b Trial

Comparison of Survival Between Planned Phase 3 Population and ECA

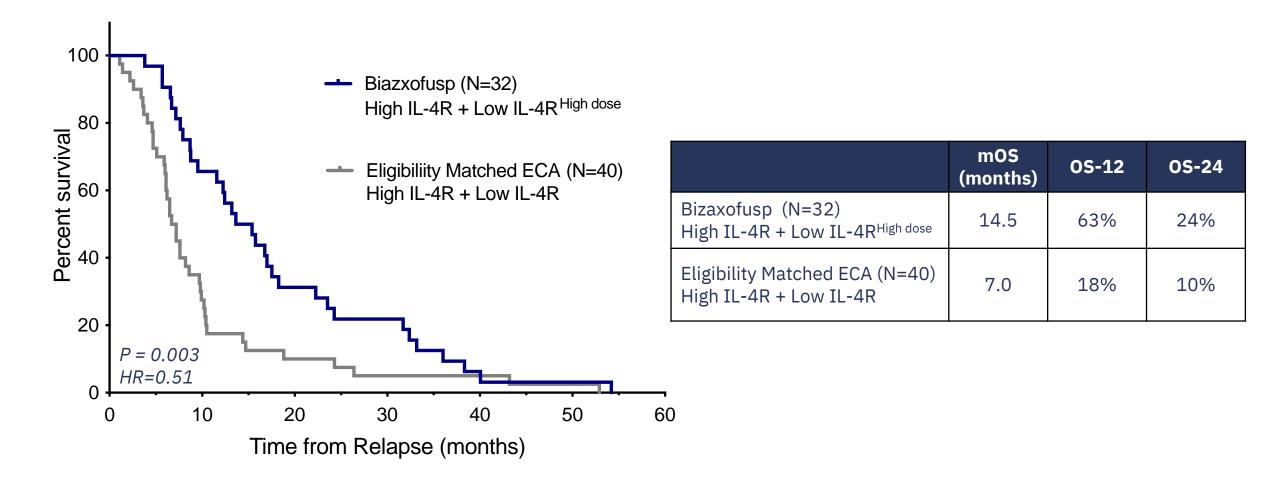
ELIGIBILITY

- Adults ≥ 18 yrs
- de novo GBM
- 1st or 2nd relapse
- Not eligible for resection
- KPS ≥ 70
- IDH wild-type only
- Archive tissue from initial Dx if available for IL-4R expression analysis

EXTERNAL CONTROL ARM

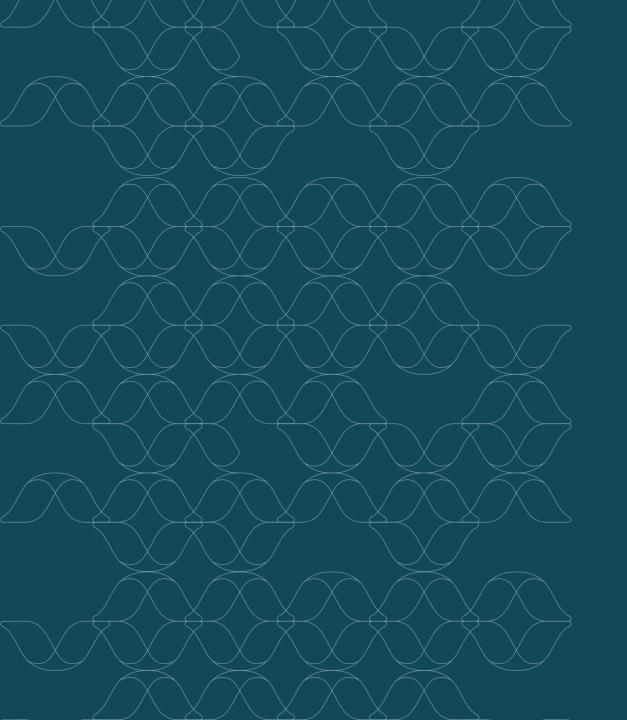
- Patient registries at:
 - University of California, San Francisco (UCSF)
 - St. Michael's Hospital (Toronto, Canada)
- Study conducted under IRB-approved protocols
- Investigators and Medicenna blinded to survival outcome
- IL-4R analysis used same IHC assay as Phase 2b study

TREATMENT


Types of therapies received in the ECA (n=81):

- Avastin (26%)
- Lomustine (25%)
- Temozolomide (14%)
- Experimental Therapy (20%)
- Irinotecan (7%)
- Avastin + Lomustine (5%)
- Radiotherapy (2%)
- Avastin + Radiotherapy (1%)

Demonstrates proof-of-concept for the FDA-endorsed Phase 3 Trial Design


Bizaxofusp Significantly Increased mOS in Planned Phase 3 Population

Median OS from time of bizaxofusp treatment is 14.0 months; OS-12 = 56%; OS-24 = 22%

2024 MEDICENNA THERAPEUTICS

Bizaxofusp (MDNA55)

Propensity Matched Study with an ECA: Comparison of Survival in the Phase 2b Trial Using FDA Guidance Documents for ECA with Propensity Scoring

Propensity Matched Scoring Using FDA Guidance Documents

ELIGIBILITY

- Adults \geq 18 yrs
- de novo GBM
- 1st or 2nd relapse
- No resection
- KPS ≥ 70
- IDH wild-type only
- IL4R analysis from initial Dx

CRITERIA

- Age
- Sex
- KPS
- MGMT methylation status
- IL-4R expression level
- Time from initial diagnosis to relapse
- Number of prior relapses
- Extent of resection at initial diagnosis
- Tumor size/location at relapse
- Steroid use prior to treatment

PROCESS

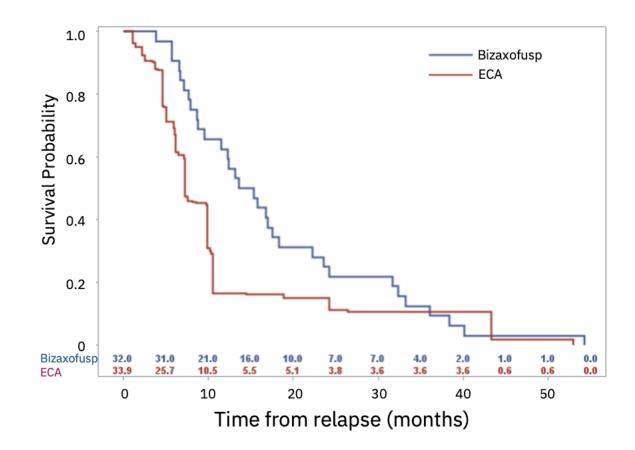
STEP 1

Data preparation: feasibility and quality, mapping, standardization, covariates

STEP 2

Estimate propensity scores: statistical models

STEP 3


Propensity score balancing algorithm - weighting

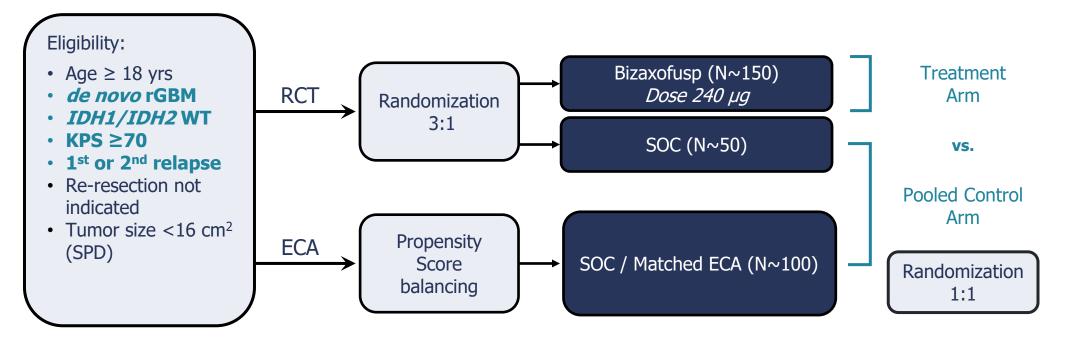
STEP 4

Evaluation of balance in baseline characteristics

Bizaxofusp Doubles Overall Survival in Phase 3 Population vs ECA

OS Increased by 370% at 1 Year | OS at 2 Years Improved by >50%

Group	mOS (months)	0 5-12	0 S-24
Bizaxofusp (n=32)	14.5	62.5%	25%
ECA (n=34)	7.2	16.7%	16.1%


Comparison	HR	95% Confid	ence Limits
Bizaxofusp vs ECA	0.629	0.382	1.038

Compelling survival benefit justifies registration trial endorsed by FDA

FDA Guided Phase 3 Trial Design

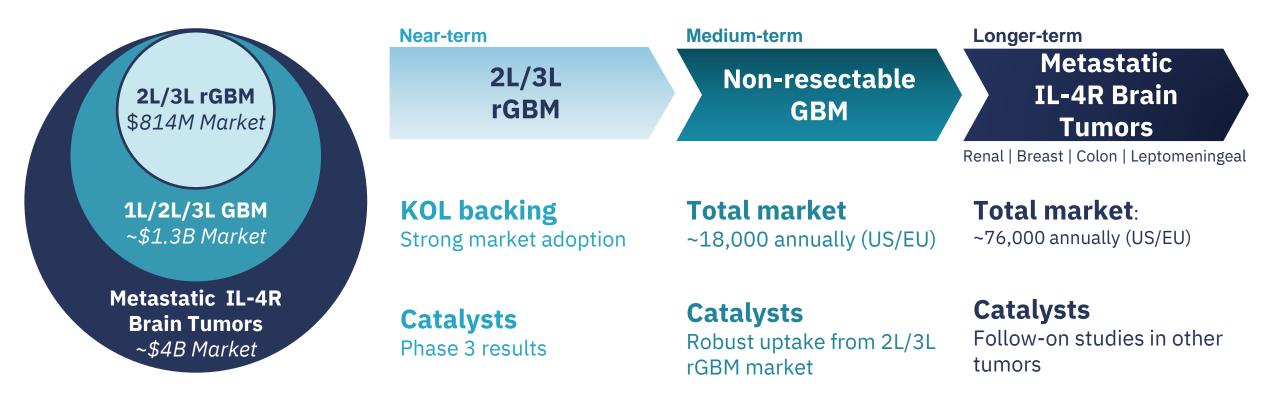
Hybrid with ECA: The First Time FDA has Endorsed Inclusion of an ECA in a Phase 3 Trial for Brain Cancer

SOC therapies allowed:

- Bevacizumab (Avastin®)
- Lomustine (CCNU, CeeNU®, Gleostine[™])
- Temozolomide (Temodar®)
- Tumor Treating Fields (Optune®)
- Radiation Therapy

Primary Endpoint:

• **OS**

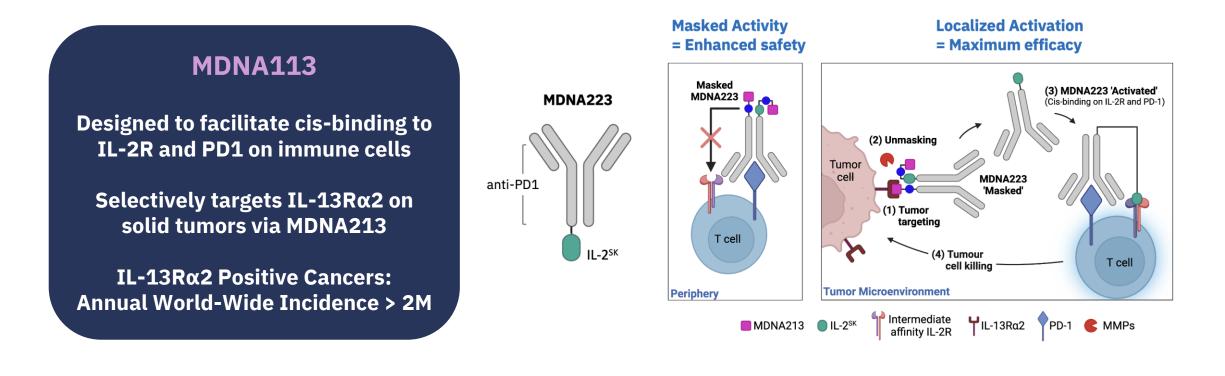

Assumptions:

- Effect size = 4.6 months in mOS
- 90% power
- HR of Bizaxofusp vs. pooled control = 0.65
- 2-sided alpha = 0.05

Primary Research Confirms \$800M Market for rGBM in US and EU

Potential \$4 Billion market for follow-on IL-4R adult metastatic brain tumors indications

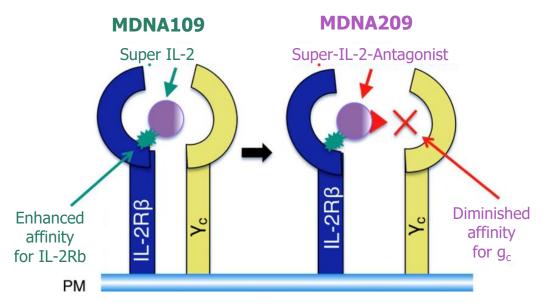
Several Precedent Market Transactions have Demonstrated the Potential for Medicenna's Pre-Clinical Assets

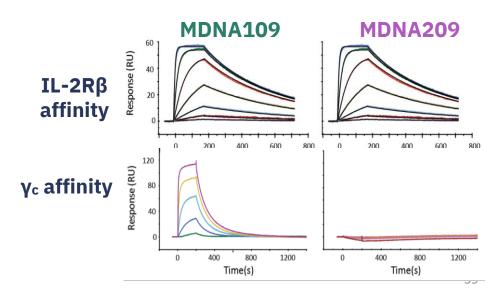

Pre-clinical assets

MDNA113 | Anti PD-1-IL-2 Masked BiSKIT MDNA209 | IL-2/15 Super Antagonist MDNA413 | IL-4/13 Super Antagonist

MDNA113: An Anti PD-1-IL-2 Masked BiSKIT*

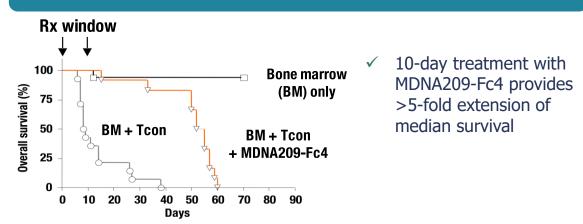
Masked Superkines Have the Potential to Increase Safety Even Further, whilst Maintaining the Same Anti-Tumor Efficacy as the Original Superkine


A potential solution to the 2028 expiration of "Big Pharma"s anti-PD-1 IP



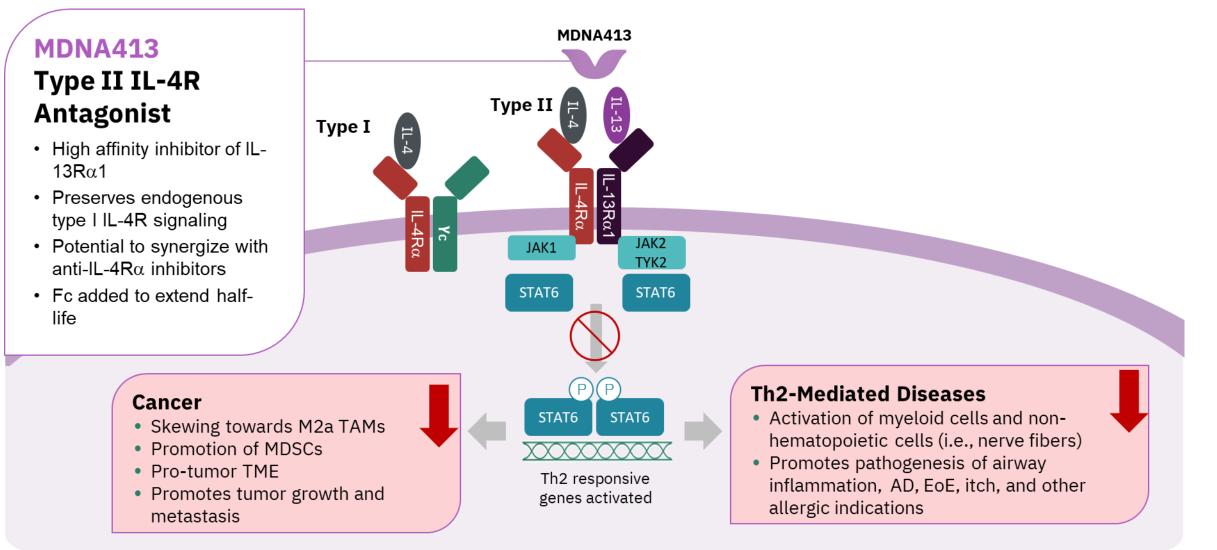
2024 MEDICENNA THERAPEUTICS

MDNA209: An IL-2/IL-15 Pathway Antagonist with a Unique MOA


Targeted Mutations Transformed IL-2 into a High-Affinity IL-2 Receptor Antagonist

Cytokine	Engineering	Significance
IL-2 WT	Naturally Occurring	Not selective but preferential stimulation of Tregs at low-doses
MDNA109 (intermediate step)	Mutations increase affinity for IL2R β chain	Increased function of effector CD4, CD8 and NK cells (and not Tregs)
MDNA209	Mutations ablate γ_c -binding	Dominant negative inhibition of effector CD4, CD8 and NK cells

Therapeutic in vivo Efficacy in GVHD


V MEDICENNA

2024 MEDICENNA THERAPEUTICS

39

MDNA413: An IL-4/IL-13 Pathway Super-Antagonist

The Potential to Address the IL-4/IL-13 Pathway in Cancer and Th2-Mediated Diseases

Evolutionary Cytokines Revolutionary Medicines

Superkine Platform

Medicenna's Drug Discovery Engine

2 First-in-Class Clinical Stage Assets

Bizaxofusp (MDNA55) | MDNA11

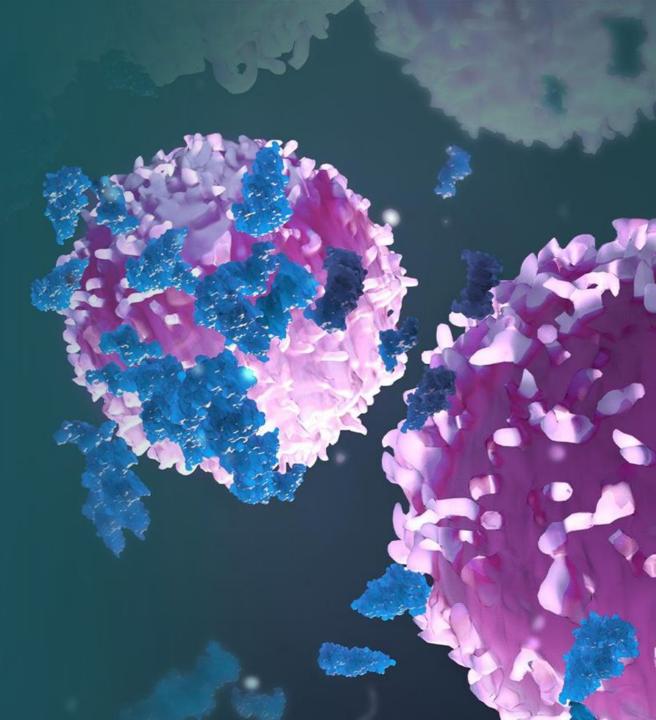
Deep and Scalable Pipeline

BiSKITs | MDNA113 | MDNA209 | MDNA413

Anticipated 2024 Milestones

MDNA11 Phase 1/2 Preliminary Data Monotherapy | Combination with KEYTRUDA®

Bizaxofusp Partnering | BTD | EMA Alignment


Financial Highlights

TSX OTCQB	MDNA MDNAF
Headquarters	Toronto, CA
Market Capitalization	\$66.9M CAD ¹
Cash	\$21.8M CAD ²
Debt	\$0
Preferred Shares	None
Basic SO	~70 Million ²
Fully Diluted SO	~70 Million ²
Insider Ownership	~24% ²
¹ As of 02/ ² As of 12/	

Thank you

Investor Relations | ir@medicenna.com

