
Evolutionary Cytokines Revolutionary Medicines

Corporate Overview June 2024 | TSX: MDNA | OTCQB: MDNAF

Disclaimer and Forward-Looking Statements

Certain statements in this presentation may constitute "forward-looking statements" under applicable securities laws. These forward-looking statements include, but are not limited to, information about possible or assumed future results of the Medicenna Therapeutics Corp's (the "Company" or "Medicenna") business, clinical trials, drug development, financial condition, results of operations, liquidity, plans and objectives. Further, any statements that express or involve discussions with respect to predictions, expectations, beliefs, plans, projections, objectives, assumptions or future events or performance (often, but not always, using words or phrases such as "expect", "seek", "endeavour", "anticipate", "plan", "estimate", "believe", "intend", or stating that certain actions, events or results may, could, would, might or will occur or be taken, or achieved) are not statements of historical fact and may be "forward-looking statements".

Forward-looking statements are based on expectations, estimates and projections at the time the statements are made that involve a number of risks and uncertainties which would cause actual results or events to differ materially from those presently anticipated. Forward-looking statements are based on expectations, estimates and projections at the time the statements are made and involve significant known and unknown risks, uncertainties and assumptions. A number of factors could cause actual results, performance or achievements to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. These include, but are not limited to, the risk factors discussed in the public filings made by Medicenna with the applicable securities commissions and regulators in Canada and the United States, including, but not limited to, the Annual Information Form dated May 14, 2020, filed in Canada on SEDAR at <u>www.edgar.com</u> and in the United States with the United States Securities and Exchange Commission on Edgar at <u>www.sec.gov</u>. Should one or more of these risks or uncertainties materialize, or should assumptions underlying the forward-looking statements prove incorrect, actual results, performance or achievements could vary materially from those expressed or implied by the forward-looking statements contained in this document. These factors should be considered carefully, and prospective investors should not place undue reliance on these forward-looking statements.

Although the forward-looking statements contained in this document are based upon what Medicenna currently believes to be reasonable assumptions, Medicenna cannot assure prospective investors that actual results, performance or achievements will be consistent with these forward-looking statements. Furthermore, unless otherwise stated, the forward-looking statements contained in this presentation are made as of the date hereof. Except as required by law, Medicenna does not have any obligation to advise any person if it becomes aware of any inaccuracy in or omission from any forward-looking statement, nor does it intend, or assume any obligation, to update or revise these forward-looking statements to reflect new events, circumstances, information or changes.

Legal Disclaimers

This presentation of Medicenna is for information only and does not, and is not intended to, constitute or form part of, and should not be construed as, an offer or invitation to buy, sell, issue or subscribe for, or the solicitation of an offer to buy, sell or issue, subscribe for or otherwise acquire any securities in any jurisdiction in which such offer, solicitation or sale would be unlawful, nor shall it or any part of it be relied upon in connection with or act as any inducement to enter into any contract or commitment or investment decision whatsoever. Certain information contained in this presentation and statements made orally during this presentation relate to or are based on studies, publications and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources.

MEDICENNA Overview

Clinical Stage Immunotherapy Company

MDNA11 – Phase 1/2

for Advanced Solid Tumors

Bizaxofusp (MDNA55) – Phase 3 Ready

for Recurrent Glioblastoma

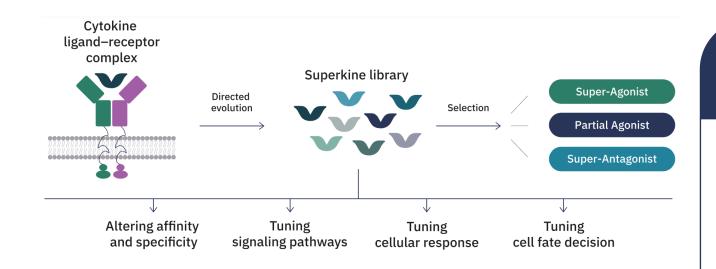
Multiple 'Pipeline in a Product' Assets

Pre-Clinical Autoimmune, Neuromuscular, Inflammation and Oncology Assets in Deal-Heavy Spaces

TSX: MDNA | OTCQB: MDNAF

2024 Anticipated Catalysts

MDNA11 • Monotherapy Expansion Data


- KEYTRUDA® Combination Data
- Bizaxofusp Breakthrough Therapy Designation
 - EMA Alignment for Trial Design
 - Partnership for Phase 3

Funded through 2026

Generating value by advancing Superkines

Superkine Platform

Transforming IL-2, IL-4 and IL-13 into Best-in-Class Superkines Using Directed Evolution

Our IL-2, IL-4 and IL-13 Superkines are known to modulate immune activity in many diseases, each providing "A Pipeline in a Product" opportunity

Superkine Design and Development

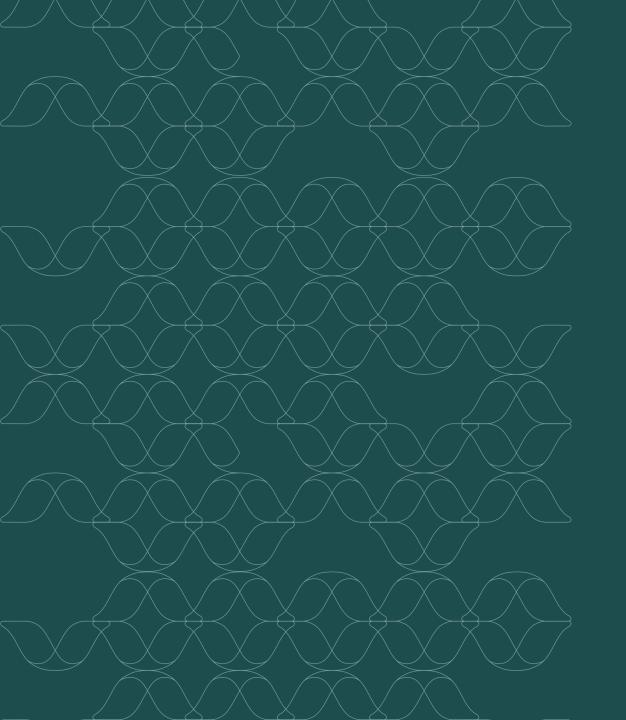
Generate Tunable Superkine Library

Transform interleukins using directed evolution to enhance desired properties

Enhance via Protein Fusion

To improve PK, add a second MOA, or confer new capabilities

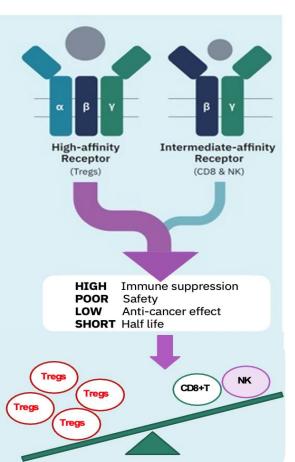
Lead Selection & Development


Advance the most promising candidates towards clinical studies

Robust Pipeline of Next Generation Superkines

Candidate	Indication	Discovery	Preclinical	Phase 1	Phase 2	Phase 3
Bizaxofusp (MDNA55) IL-4–Toxin Fusion	Recurrent Glioblastoma (GBM)		Phase 3	Ready Asset		
MDNA11 IL-2 Super Agonist monotherapy	Melanoma, cSCC, BCC Merkel cell, MSI-H/dMMR					
MDNA11 IL-2 Super Agonist KEYTRUDA [®] combo	Various solid tumors					
MDNA113 Anti PD-1-IL-2 Masked BiSKIT	Various solid tumors expressing IL-13Rα2					
MDNA209 IL-2/15 Pathway Super Antagonist	Autoimmune Diseases					
MDNA413 IL-4/13 Pathway Super Antagonist	Oncology and Th2- mediated diseases					

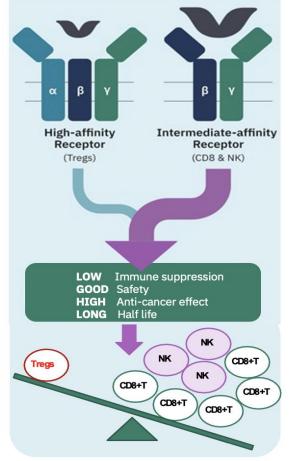
MDNA11


Clinical-Stage Asset in Phase 1/2 with a Monotherapy Treatment Arm and a Combination Arm with KEYTRUDA®

MDNA11: The Need for a Safe and Effective IL-2 Immunotherapy

PROLEUKIN® (Iovance) rHIL-2

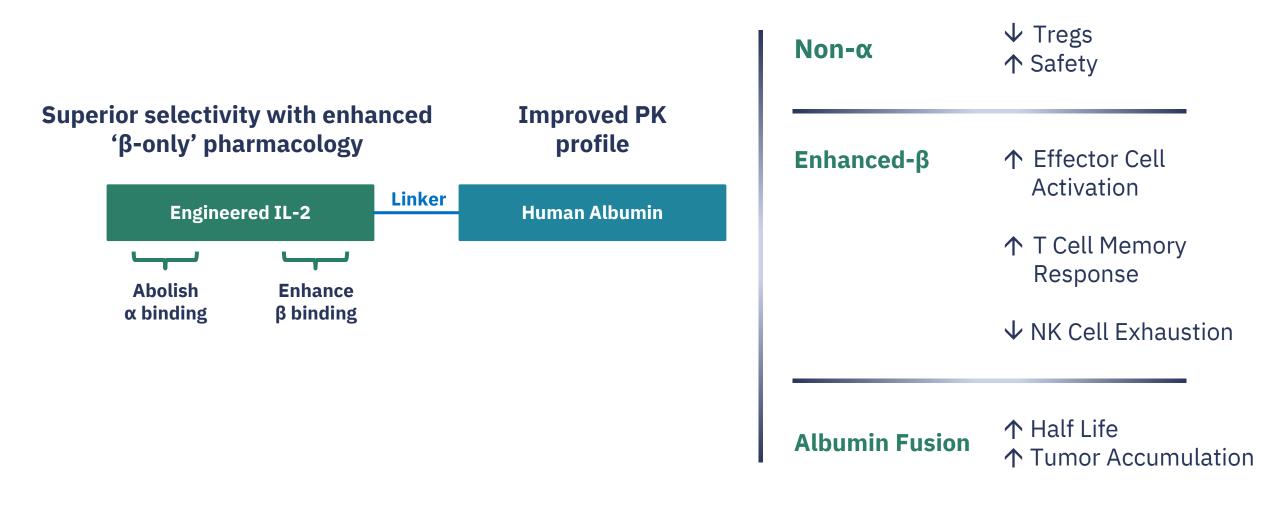
MDNA11


MEDICENNA

Approved in the 1990s:

- Metastatic melanoma
 Repaired cell carcinoma
- Renal cell carcinoma

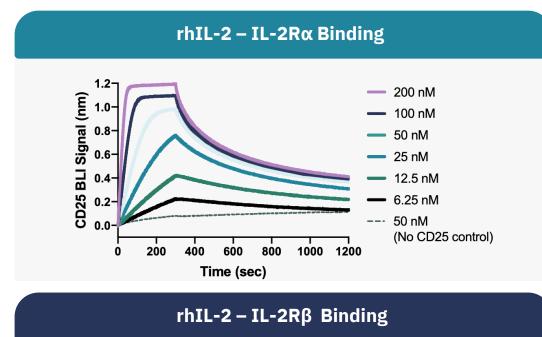
Limited Clinical Use:

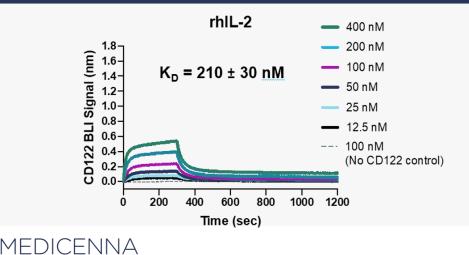

- Toxicity via **IL-2Rα**
- Requires ICU
 administration
- Frequent dosing every 8 hours for up to 5 days

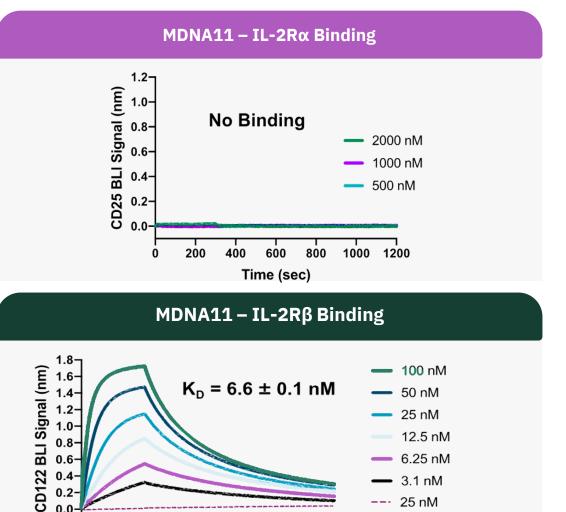
Single Agent Activity:

- 4 partial responses in on-going Phase 1/2
- 100% target lesion reduction
 - Pancreatic
 - Melanoma
- Desirable Safety
- Dosed every two weeks

MDNA11: A Long-Acting Non-α, Enhanced-β, IL-2 Super Agonist




Differentiated Features vs. PROLEUKIN® Demonstrate Best-in-Class Potential



MDNA11 Selectively Binds IL-2Rβ vs. rhIL-2

No IL-2Rα (CD25) Binding and Enhanced Affinity and Selectivity for IL-2Rβ (CD122) Compared to rhIL-2

2024 MEDICENNA THERAPEUTICS

800

1000 1200

600

0.2

0.0

200

400

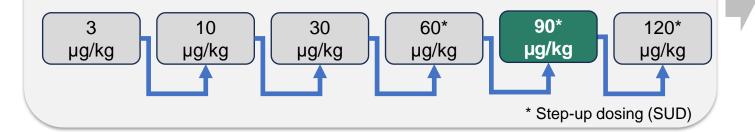
MDNA11: Best-in-Class Potential

	MDNA11	CLINIGEN Proleukin ¹	NEKTAR NKTR-214	SAR'2452	ALKS 4230 ³	Werewolf THERAPEUTICS WTX-124 ⁴	X : ILIO THERAPEUTICS XTX202 5 discontinued mono	Synthekine STK-012 ⁶	ascendis pharma TransCon IL-2β/γ ⁷
No binding to IL-2Rα	V	X	X	V	V	X	V	X	Minimal binding
Enhanced IL-2Rβγ Binding	V	X	X	X	X	X	X	X	X
QW, Q2W or Q3W Dosing	V	X	V	V	X	V	V	V	V
Tumor Accumulation	V	X	X	X	X	V	×	×	X
No Pegylation Liabilities	V	V	X	X	V	V	V	X	X
Durable Single- Agent Activity	V	V	X	X	?	?	X	?	?

MDNA11's strong anti-tumor activity, desirable safety profile and convenient outpatient dosing regimen paves the way for a potential best-in-class therapy with significant commercial potential

¹Nature Rev. Drug Discovery 2021; ²Nature Comm 2021 Ptacin; 3 JITC 2020 Lopes; 4 Cancer Immunol Res 2022 Nirschl; ⁵ASCO 2021 O'Neil; ⁶AACR 2024 Izar; ⁷J Immunother Cancer 2022 Rosen and Company's Oncology Program Update on 5/31/23. Additional information from https://clinicaltrials.gov/

ABILITY Phase 1/2 Study: Dose Expansion & Combination with KEYTRUDA[®]


Global, Multi-Center, Open-Label Study Underway

MDNA11 Monotherapy Dose Escalation (IV Q2W)

Modified 3+3 design

MEDICENNA

Identify monotherapy Recommended Dose for Expansion (RDE)

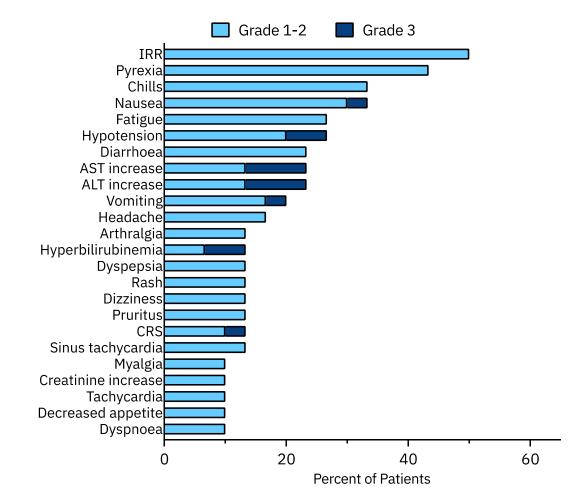
MDNA11 (Q2W) + Pembrolizumab (Q6W) Dose Escalation

Select PD1/L1 refractory and CPI-naive indications

Identify combination RDE (cRDE) for MDNA11

Monotherapy Dose Expansion (Phase 2)

- MDNA11 @ RDE (90 µg/kg Q2W) in selected checkpoint inhibitor (CPI) resistant solid tumors:
 - Melanoma
 - Non-melanoma skin cancer (cSCC, BCC, MCC)
 - MSI-H/dMMR tumors


Combination Dose Expansion (Phase 2)

- MDNA11(Q2W, cRDE) + Pembrolizumab (400 mg, Q6W)
- Melanoma and other select advanced solid tumors

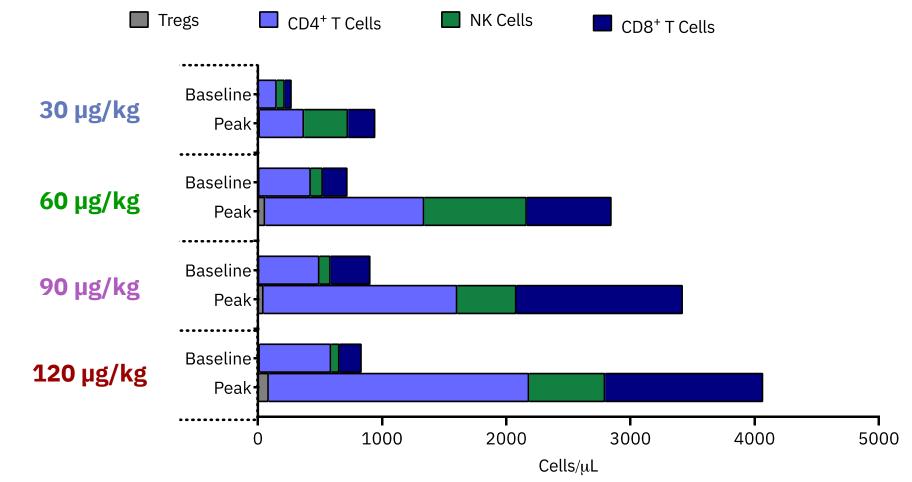
ABILITY-1: A Beta-only IL-2 ImmunoTherapY Study

Desirable Safety Profile Across All Doses in Monotherapy Escalation

Most Common Treatment Related Adverse Events (TRAEs in ≥10% of Patients)

	No. (%) of Patients		
	All Grades (N=30)	Grade 3 (N=30)	
All AEs	30 (100%)	20 (66.66%)	
Treatment related AEs	30 (100%)	11 (36.6%)	
All SAEs	12 (40%)	8 (26.6%)	
Treatment related SAEs	9 (30%)	5 (16.6%)	

- No dose limiting toxicity (DLT)
- No grade 4 or 5 TRAE
- 96.3% of TRAEs were grade 1-2; majority resolved within ≤72 hours
- Grade 3 LFT elevations were asymptomatic and transient; resolved prior to next scheduled dose
- Grade 3 hypotension seen in patients with baseline adrenal insufficiency

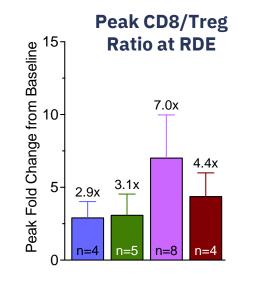


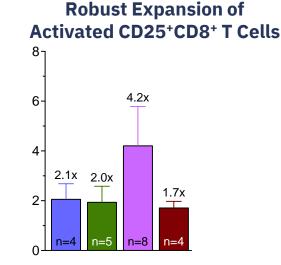
IRR, Infusion Related Reaction

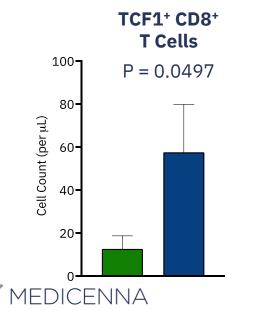
MDNA11 Preferentially Expands Circulating Effector Immune Cells

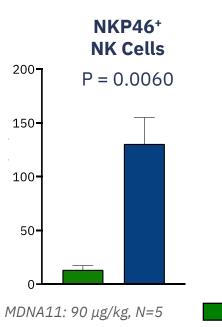
CD8⁺ T Cells Demonstrate the Most Expansion Compared to Baseline

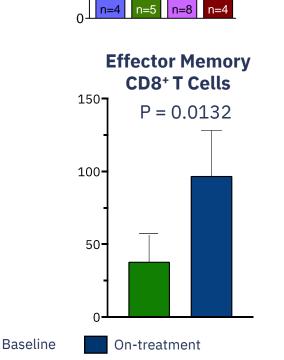
Immune cells were assessed by flow cytometry and the numbers were calculated based on the absolute lymphocyte count Peak values are from day 8 post treatment following dose 1, 2 or 3 Tregs: CD4+CD25+ FOXP3+, NK Cells: CD3- CD56+

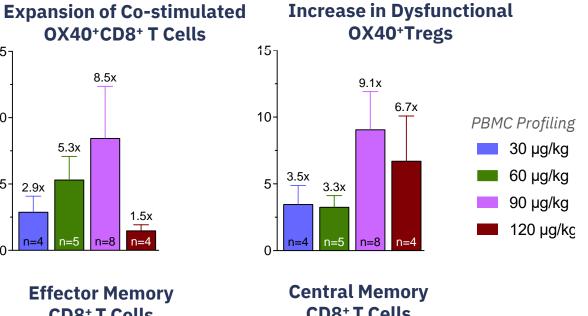

Optimal Immune Response: Sustained Effector Cell Expansion with Repeat Dosing and Enhanced Stemness, Activation, and Memory

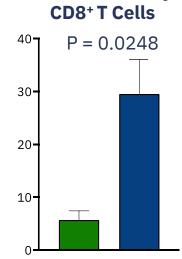

15


10


5-

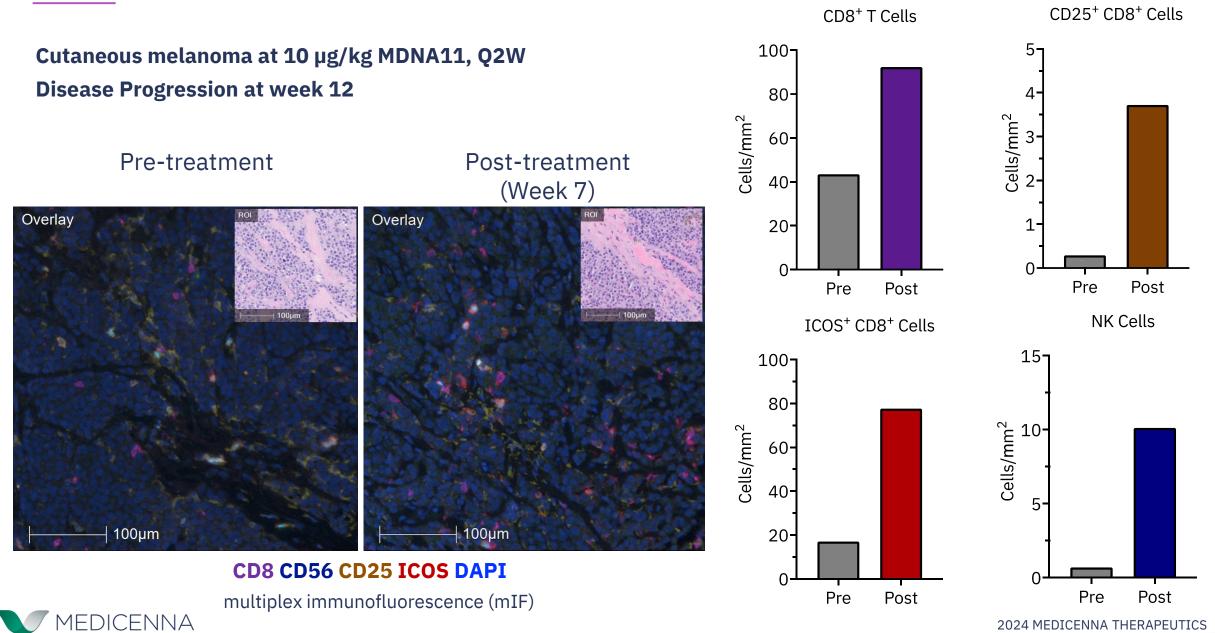

2.9x



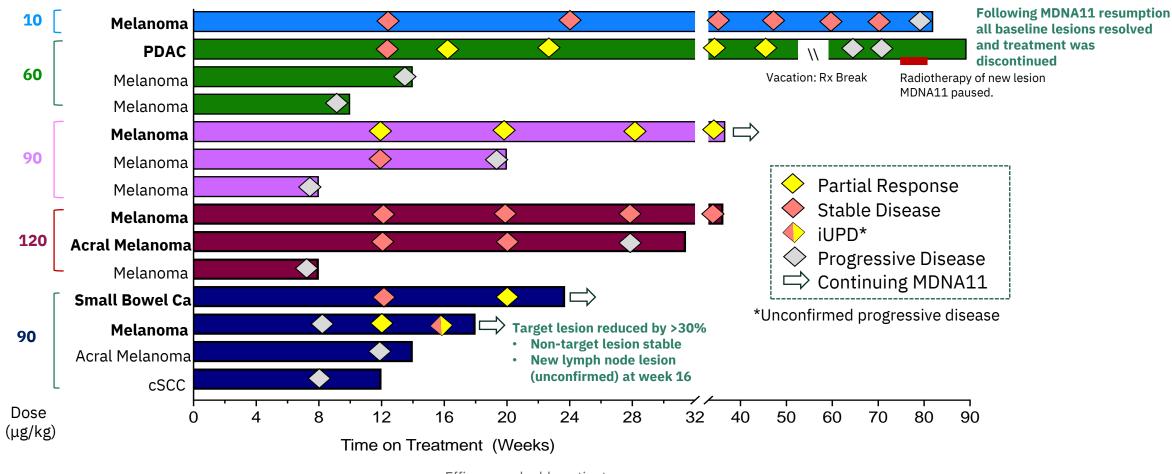

OX40⁺CD8⁺ T Cells

1.5x

8.5x


5.3x

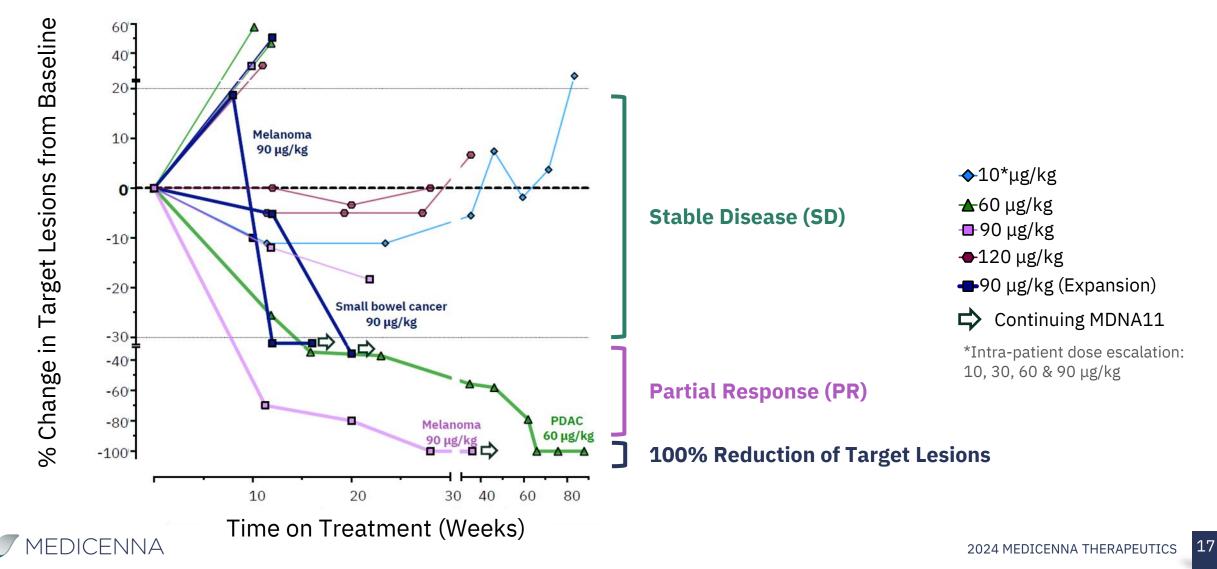
14


Increased Tumor Infiltrating CD8⁺ T and NK Cells

15

Monotherapy: Shows Durable Tumor Response in High-Dose Phase-2 Eligible Patients Resistant to Checkpoint Inhibitors

Response Rate (4PR): 28.6% | Clinical Benefit Rate (4PR + 3SD > 24 weeks): 50%



Efficacy evaluable patients Cut-off date: 22-Mar-2024

4 Partial Responses, Including 100% Reduction of Target Lesions in 2 Patients

Response Rate (4/14 PR): 28.6% | Clinical Benefit Rate (4 PR + 3 SD > 24 weeks): 50%

No DLTs in Dose Cohort 1 of Combination Escalation with Pembrolizumab

Dose Cohort 2 is Enrolling at the Next Higher Dose of 90 μ g/kg Following Absence of Any DLTs at 60 μ g/kg

Cohort	MDNA11 Target Dose (Q2W)	Pembrolizumab Dose (Q6W)	Status
Cohort 1	60 μg/kg (Priming 2 x 30 μg/kg)	400 mg	3 Patients : No DLT
Cohort 2	90 μg/kg (Priming 30, 60 μg/kg)	400 mg	Enrolling

DLT period: First priming dose to 21 days from target dose (49 days from first priming dose)

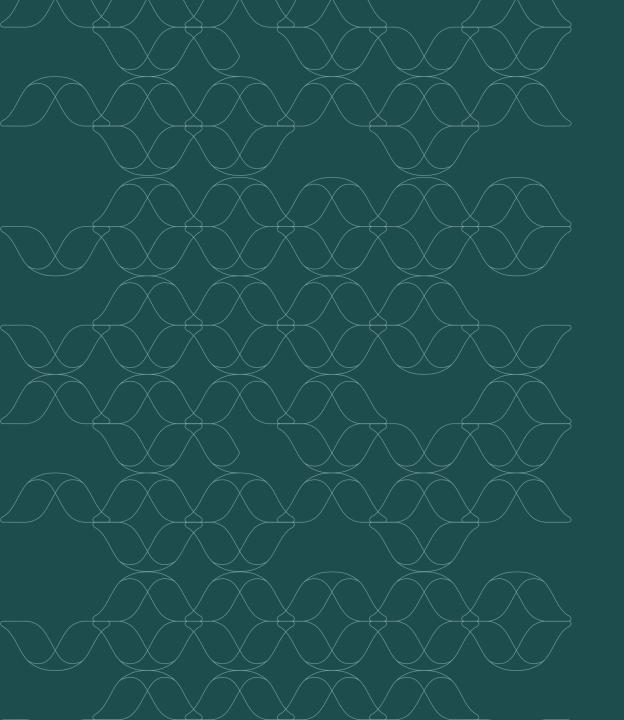
Cohort 1: MDNA11 60 µg/kg (Q2W) + Pembrolizumab 400 mg (Q6W)					
Patient ID	Age/ Sex	Primary tumor			
Patient 1	59/F	Ovarian SCC			
Patient 2	59/F	NSCLC			
Patient 3	52/F	MSS Colorectal Cancer			

• No DLTs

1EDICENNA

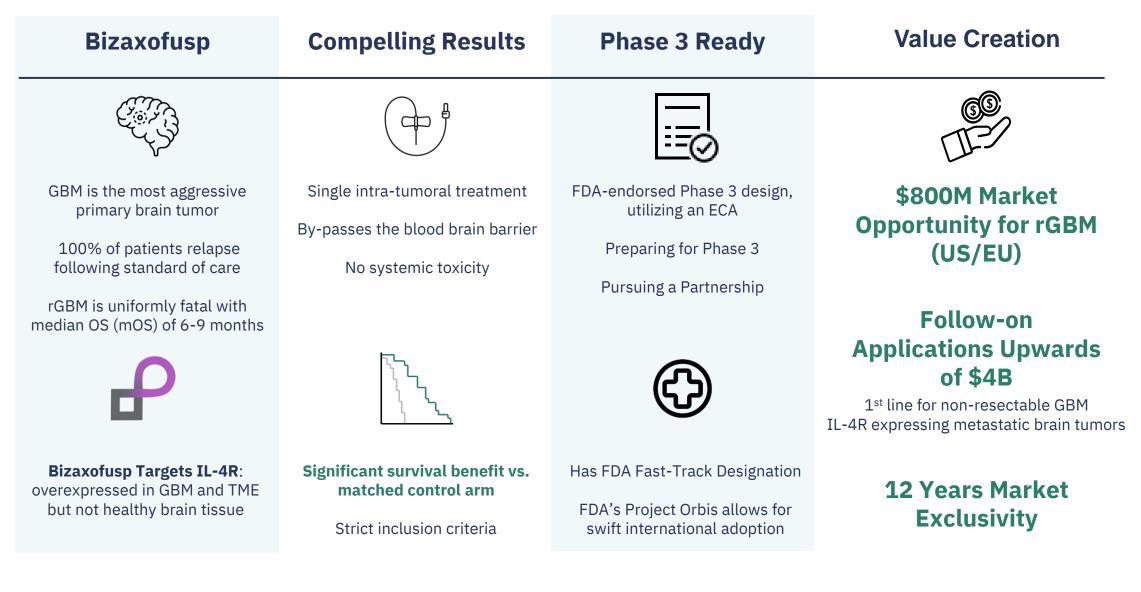
• No treatment related SAEs

• No grade 4/5 TRAEs


• Only one grade 3 TRAE (Transient WBC count decrease on day 2 of priming dose; No associated clinical sequalae)

MDNA11: A Potential Best-In-Class IL-2

High Do	se Phase-2 Eligible Patients	
4/14 29% 50%	Partial Responses Overall Response Rate Clinical Benefit Rate	 ✓ Desirable Monotherapy Safety Profile ✓ Dosing Every 2 Weeks ✓ Preferential Expansion of Circulating CD8⁺T and NK cells
Best-in-	-Class Potential	Key Features
Best-in- ✓ Durable Res		Key Features ✓ Increased Immune 'Stemness'
 ✓ Durable Res ✓ Complete R 		


Bizaxofusp (MDNA55) for Recurrent GBM

A Phase 3-Ready Asset with Orphan Drug Status, Fast Track Status and an FDA-Endorsed Pivotal Phase 3 Trial Design

Pursuing a Development and Commercial Partnership

Bizaxofusp: A Significant Market Opportunity for Brain Cancer

MEDICENNA

Bizaxofusp: A Molecular Trojan Horse

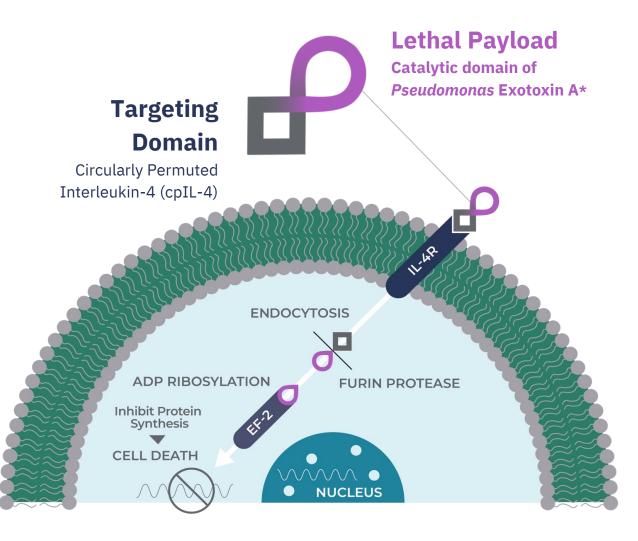
A First-in-Class Phase 3-ready Empowered IL-4 Superkine for rGBM

Approach By-Passes BBB

Single intra-tumoral CED infusion **avoids systemic toxicity** and achieves tumor control

Targets IL-4R

Receptor is expressed in brain tumors and immunosuppressive, non-malignant TME, <u>but</u> not in healthy brain cells

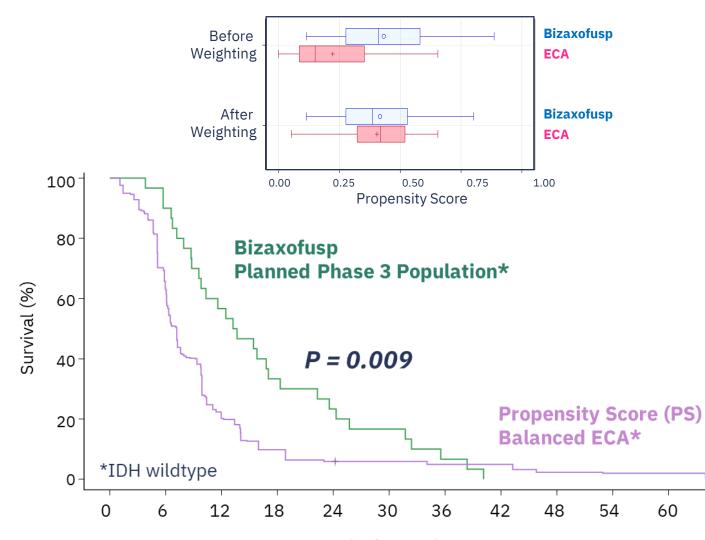

Highly Selective Avoids off-target toxicity

Disrupts the TME

Targets IL-4R positive MDSCs in GBM unblinds the immunosuppressive TME

Causes Immunogenic Cell Death

Sustained anti-tumor immunity remains after clearance of bizaxofusp

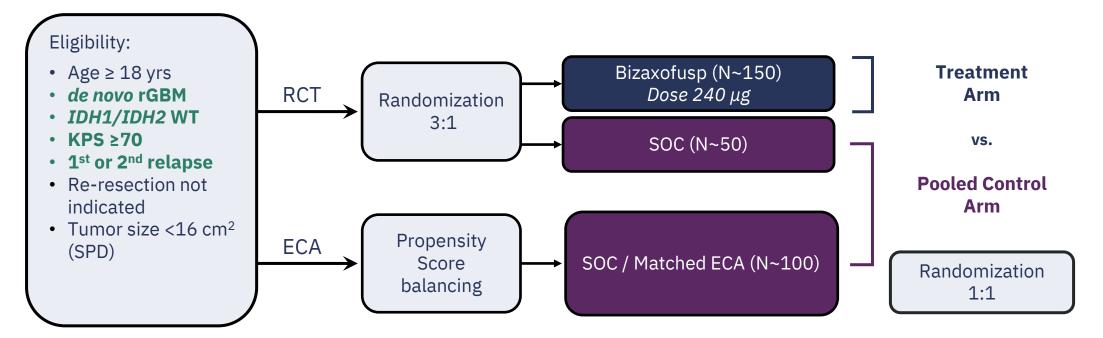


BBB, blood-brain barrier; CED, convection enhanced delivery; TME, tumor microenvironment; MDSCs, myeloid-derived suppressor cells

Bizaxofusp Significantly Increased Median Overall Survival

OS Increased by 180% at 1 Year | OS at 2 Years Improved by 290%

	PS Balanced ECA (N = 29.5)	Bizaxofusp (N = 30)
OS-12	20.2%	56.7%
OS-18	9.8%	33.3%
OS-24	5.9%	23.3%
OS-30	5.9%	16.7%
mOS (months)	7.2	13.5
p-value*	0.0	09
HR* (95 % CI)	0.53 (0.344,	


*Log-rank test

V MEDICENNA

Months from Relapse

FDA Endorsed Phase 3 Trial Design

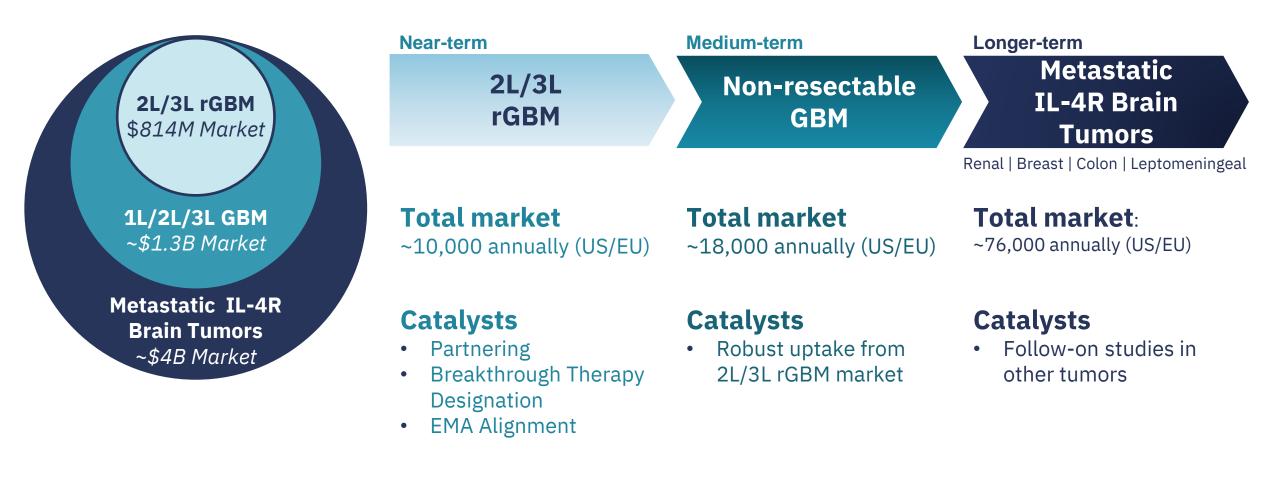
Hybrid with ECA: The First Time FDA has Endorsed Inclusion of an ECA in a Phase 3 Trial for Brain Cancer

SOC therapies allowed:

- Bevacizumab (Avastin®)
- Lomustine (CCNU, CeeNU[®], Gleostine[™])
- Temozolomide (Temodar®)
- Tumor Treating Fields (Optune®)
- Radiation Therapy

Primary Endpoint:

• 0S


Assumptions:

- Effect size = 4.6 months in mOS
- 90% power
- HR of Bizaxofusp vs. pooled control = 0.65
- 2-sided alpha = 0.05

V MEDICENNA

Primary Research Confirms \$800M Market for rGBM in US and EU

Potential \$4 Billion market for follow-on IL-4R adult metastatic brain tumors indications

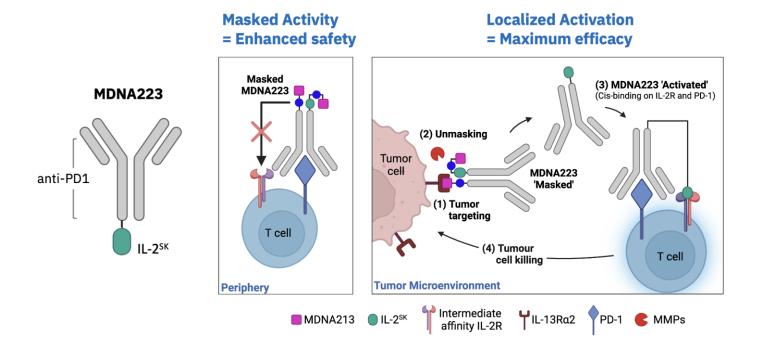
Several Precedent Market Transactions have Demonstrated the Potential for Medicenna's Pre-Clinical Assets

Pre-clinical assets

MDNA113 | Anti PD-1-IL-2 Masked BiSKIT MDNA209 | IL-2/15 Super Antagonist MDNA413 | IL-4/13 Super Antagonist

MDNA113: An Anti PD-1-IL-2 Masked BiSKIT for Cancer

Masked Superkines: Increased Safety, Maintaining Anti-Tumor Efficacy


Targeting IL-13Rα2 Positive Cancers: Annual World-Wide Incidence > 2M

\$250M Sep 2022

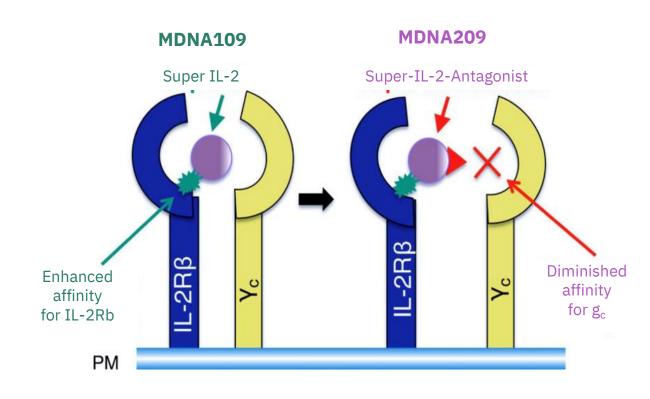
Roche

ACQUIRED

GOOD

Designed to facilitate cis-binding to IL-2R and PD1 on immune cells

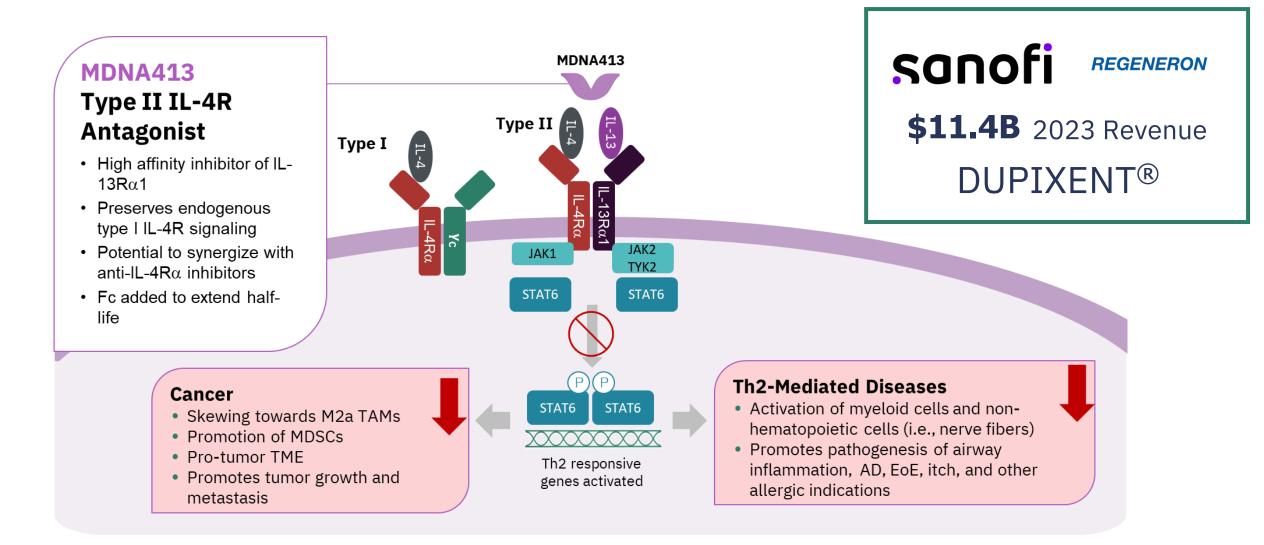
Selectively targets IL-13Rα2 on solid tumors via MDNA213


A potential solution to the 2028 expiration of "Big Pharma"s anti-PD-1 IP

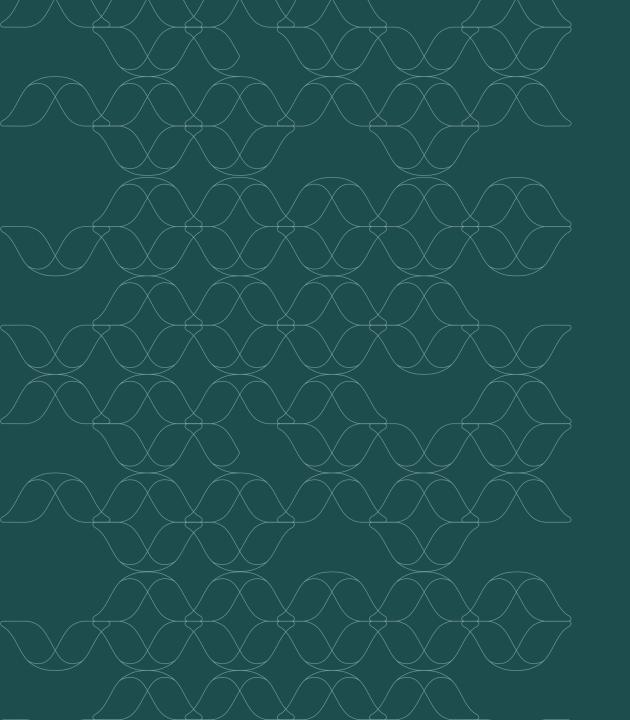
MDNA209: An IL-2/IL-15 Pathway Antagonist

A Novel Mechanism for Treating Autoimmune Diseases

Targeted Mutations Transformed IL-2 into a High-Affinity IL-2/IL-15 Receptor Antagonist

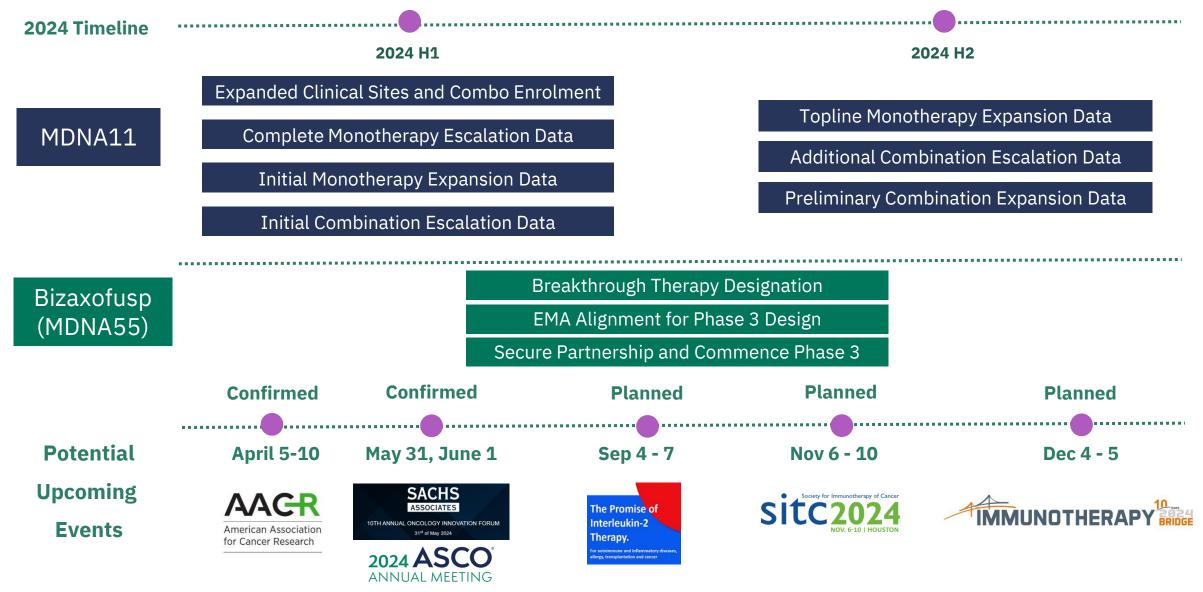


- > Mutations ablate γ_c -binding
- Dominant negative inhibition of effector CD4, CD8 and NK cells



MDNA413: A Highly Selective IL-4/IL-13 Pathway Super-Antagonist

The Potential Topical or Aerosolized Administration for Chronic Inflammatory Diseases



Catalysts and Financials

Expected Milestones and Events

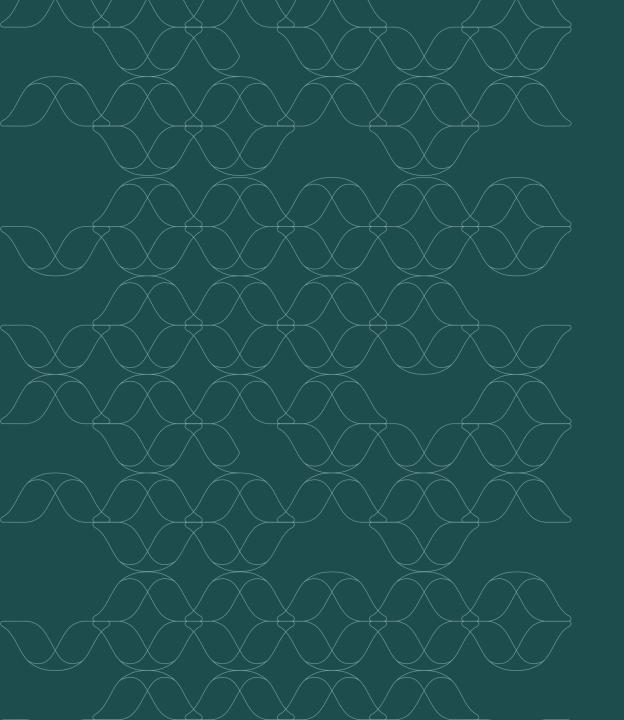
2024 Anticipated Milestones & Upcoming Events

Evolutionary Cytokines Revolutionary Medicines

Superkine Platform

Medicenna's Drug Discovery Engine

- ✓ 2 First-in-Class Clinical Stage Assets MDNA11 | Bizaxofusp (MDNA55)
- Robust Oncology & Autoimmune Pipeline
 BiSKITs | MDNA113 | MDNA 209 | MDNA413 | MDNA134


Next Generation **Superkines** Developing Life-Changing **Therapies**

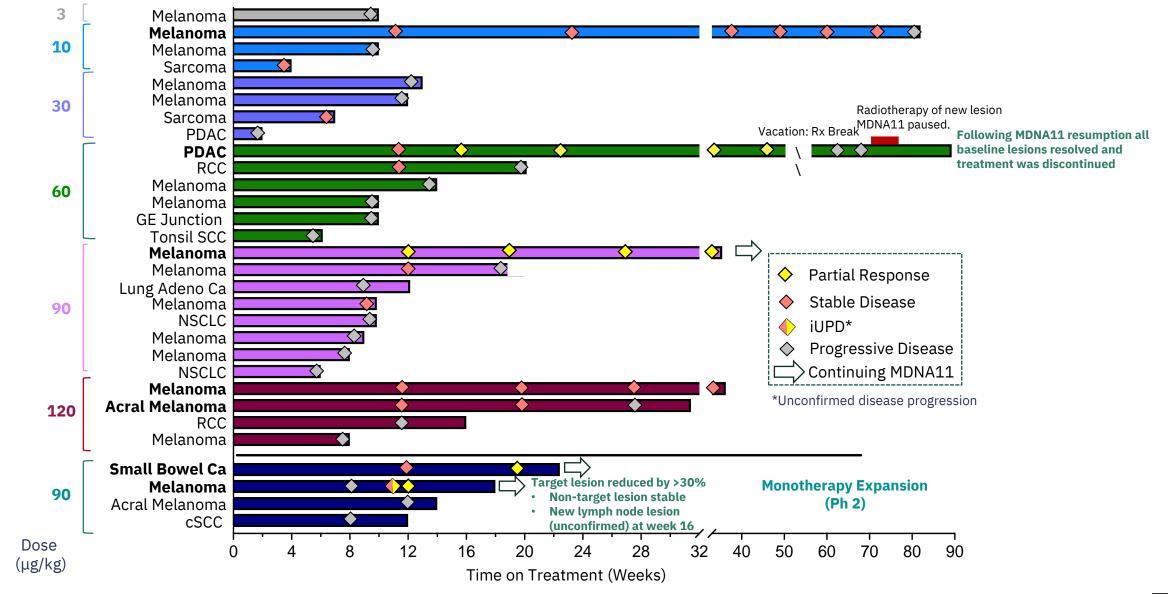
Financial Highlights				
TSX OTCQB	MDNA MDNAF			
Headquarters	Toronto, CA			
Market Capitalization	\$160M CAD			
Cash	\$37M CAD ^{1,2}			
Debt	\$0			
Basic SO	~80 Million ^{1,2}			
Fully Diluted SO	~104 Million ^{1,2}			
Insider Ownership	~22% ^{1,2}			

¹ As of 3/31/2024

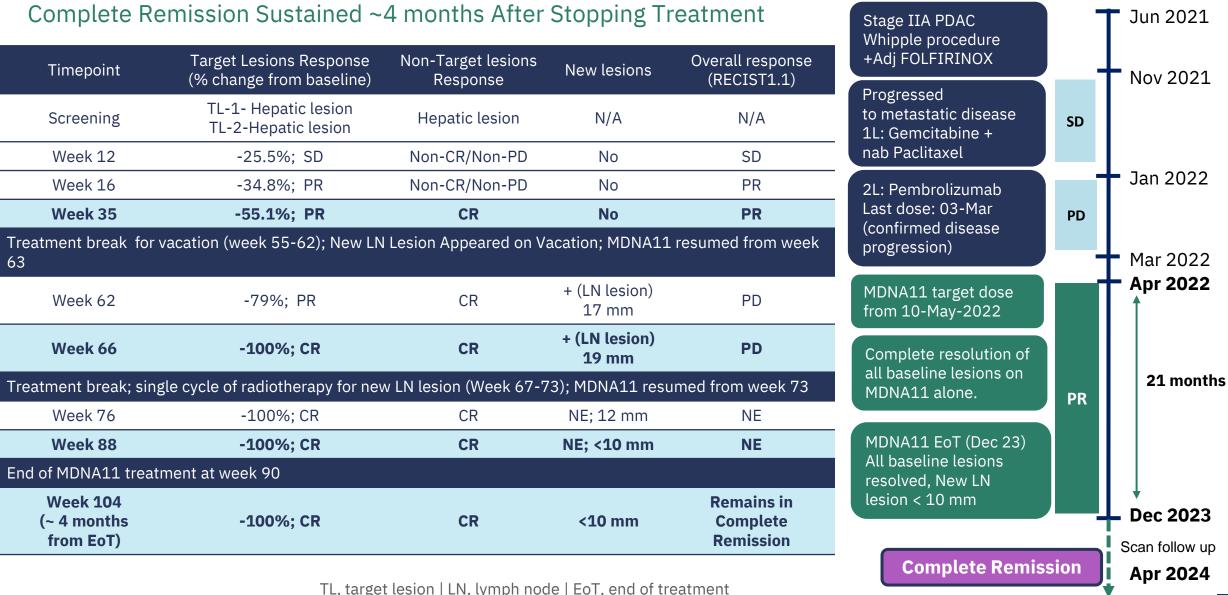
² Adjusted for recent \$20M private placement by RA Capital, which included ~5M common shares and ~5M pre-funded warrants

Thank you

Investor Relations | ir@medicenna.com


Baseline Monotherapy Patient and Tumor Characteristics

All patients have advanced solid tumors and failed prior therapies


Baseline characteristics	Escalation/Evaluation (N=30)	Expansion (N=8) Enrolling	
(as of 22-Mar-2024)	Completed		
Age, years: median (range)	63 (27-78)	65.5 (49-85)	
Male, N (%)	22 (73.3%)	4 (50%)	
Baseline ECOG = 0, N (%)	19 (63.3%)	5 (62.5%)	
Baseline ECOG = 1, N (%)	11 (36.6%)	3(37.5%)	
Primary Tumor Type	N (%)	N (%)	
Melanoma (16 Cutaneous, 1 Mucosal and 2 Acral)	16 (53.3 %)	3 (37.5%)	
Non-small Cell Lung Cancer (NSCLC)	3 (10%)		
Pancreatic Ductal Adenocarcinoma (PDAC)	3 (10%)		
Renal Cell Carcinoma (Non-Clear Cell)	2 (6.6%)		
Sarcoma (1 Pleiomorphic sarcoma and 1 Leiomyosarcoma)	2 (6.6%)		
Ovarian Cancer	2(6.6%)		
Cutaneous Squamous Cell Carcinoma		2 (25%)	
Basal Cell Carcinoma		1 (12.5%)	
Tonsillar Squamous Cell Carcinoma	1 (3.3%)		
Small Bowel Cancer		1 (12.5%)	
Gastro-esophageal/Gastric Adenocarcinoma	1 (3.3%)	1 (12.5%)	
Prior Systemic Therapies	N (%)	N (%)	
Prior Lines of Therapy: 1-2	22 (73.3%)	6 (75%)	
Prior Lines of Therapy: 3-4	8 (26.6%)	2 (23%)	
Immunotherapy	22 (73.3%)	8 (100%)	
Targeted Therapy	5 (16.6%)	1 (12.5%)	
Chemotherapy	15 (50 %)	2 (25%)	

MEDICENNA

MDNA11: Duration & Response (N=30), All Dose Cohorts

Complete Remission in Patient with Pancreatic Cancer (MSI-H)

SD, stable disease | PR, partial response | CR, complete response

MEDICENNA

Sustained Partial Response with 100% Reduction of Target Lesions

Sustair	– ned Response in Mela	noma Patien	it on MDN	411 (90 µg/kg)	Stage I Cutaneous Melanoma with multiple recurrences (Resections of primaries)	Aug 2013
Timepoint	Target Lesions Response (% change from baseline)	Non-Target Lesions Response	New Lesions	Overall Response (RECIST1.1)	Metastatic disease Resection of metastatic site (small bowel)	- Oct 2022
Screening	Peritoneal Nodule	Multiple Peritoneal Nodules	N/A	N/A	1L: Nivolumab + Ipilimumab Nivolumab (9 cycles)	- Nov 2022
Week 12	-70%; PR	Non-CR/ Non-PD	No	PR	Ipilimumab (4 cycles) Last dose: 16-May-2023	PR
Week 20	-80%; PR	Non-CR/ Non-PD	No	PR	d/c due to progressive disease.	May 2023
Week 28	-100%; CR	Non-CR/ Non-PD*	No	PR	MDNA11 target dose from 17-Aug-2023	Jul 2025
Week 36	-100%; CR	Non-CR/ Non-PD*	No	PR		
Week 44	-100%; CR	Non-CR/ Non-PD*	No	PR	100% reduction of target lesions. Non-target lesions continue to	PR — Jan 2024
*Non-Target Le	esions continue to decrease				decrease	
					Continuing on MDNA11 > 11 months	May 2024
MED	ICENNA	PR, partial resp	oonse CR, con	nplete response	2024	MEDICENNA THERAPEUTICS 37

MDNA11: Extensive Independent Validation of IL-2 Superkine Platform

Author/Publication	Title	MDNA109 Platform
<u>Gao, Yu</u> et al, JCI 2023	Implication of 99mTc-sum IL-2 SPECT/ CT in immunotherapy by imaging of tumor infiltrating T cells	SumIL2-Fc in article is MDNA109FA-Fc (Long acting "not-alpha" variant)
<u>Bae, J et al., Nature Cell Biology</u> 2022	IL-2 delivery by engineered mesenchymal stem cells re-invigorates CD8+ T cells to overcome immunotherapy resistance in cancer	sIL-2 in article is MDNA109FA-Fc (Long acting "not-alpha" variant)
Allen, GM et al., Science 2022	Synthetic cytokine circuits that drive T cells into immune-excluded tumors	sIL-2 in article is MDNA109
Brog, RA et al , Cancer Immunology Research 2022	Superkine IL2 and IL33 armored CAR T cells reshape the tumor microenvironment and reduce growth of multiple solid tumors	Super 2 in article is MDNA109 (variant D10)
Merchant, R et al, JITC 2022	Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate	MDNA11 in article is MDNA109FEAA-Albumin (Long acting "not-alpha" variant)
Wolf, NK et al, PNAS 2022	Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I–deficient and MHC I+ tumors	H9-MSA in article is MDNA109-MSA (Long acting version fused to mouse albumin)
<u>Hsu, EJ et. al., Nature 2021</u>	A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy	SumIL2-Fc in article is MDNA109FA-Fc (Long acting "not-alpha" variant)
<u>Quixabeira, D et al., Front.</u> Immuno., 2021	Oncolytic Adenovirus Coding for a Variant Interleukin 2 (vIL-2) Cytokine Re-Programs the Tumor Microenvironment and Confers Enhanced Tumor Control	vIL-2 in article is MDNA109
<u>Sun, Z et. al., Nature 2019</u>	A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8+ T- cell response and effective tumor control	SumIL2-Fc in article is MDNA109FA-Fc (Long acting "not-alpha" variant)
Ardolino, A et al., JCI 2015	Cytokine therapy reverses NK cell anergy in MHC-deficient tumors	H9 in article is MDNA109
Zitvogel, L and Kroemer, G, JCI 2014	Cytokines reinstate NK cell–mediated cancer immunosurveillance	H9 in article is MDNA109
Levin, AM et al., JCI 2012	Exploiting a natural conformational switch to engineer an Interleukin-2 superkine	Super-2 and H9 in article is MDNA109

Bizaxofusp (MDNA55): Publications

Author/Publication	Title
Sampson JD et al, Neuro Oncology 2023	Targeting the IL4 receptor with MDNA55 in patients with recurrent glioblastoma: Results of a phase IIb trial
Bagley SJ, Neuro Oncology, 2023	Editor's Choice Editorial: Phase II trials in the era of glioblastoma immunotherapy: New mechanisms of action, familiar challenges in trial design and tumor response assessment
Majumdar A et al, Statistics in Biosciences, 2022	Building an External Control Arm for Development of a New Molecular Entity: An Application in a Recurrent Glioblastoma Trial for MDNA55
Davi R et al, Neuro Oncology Advances 2021	Incorporating External Control Arm In MDNA55 Recurrent Glioblastoma Registration Trial
Rahman R et al, Lancet, 2021	Leveraging external data in the design and analysis of clinical trials in neuro-oncology
Elligson B et al, Clin. Cancer Res. 2021	Modified RANO (mRANO), Immunotherapy RANO, and Standard RANO Response to Convection- Enhanced Delivery of IL4R-Targeted Immunotoxin MDNA55 in Recurrent Glioblastoma
Mohan, S et al SNI, 2021	Multiparametric MRI assessment of response to convection-enhanced intratumoral delivery of MDNA55, an interleukin-4 receptor targeted immunotherapy, for recurrent glioblastoma
Han J. and Puri R. J Neuro-Oncology , 2018	Analysis of the cancer genome atlas (TCGA) database identifies an inverse relationship between interleukin-13 receptor α 1 and α 2 gene expression and poor prognosis and drug resistance in subjects with glioblastoma multiforme
Kamran N, et. al Mol Ther, 2017	Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy
<u>Otvos B et. al., Stem Cells , 2016</u>	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion

